Advertisement

Earth, Moon, and Planets

, Volume 120, Issue 2, pp 113–146 | Cite as

An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

  • P. Wurz
  • D. Lasi
  • N. Thomas
  • D. Piazza
  • A. Galli
  • M. Jutzi
  • S. Barabash
  • M. Wieser
  • W. Magnes
  • H. Lammer
  • U. Auster
  • L. I. Gurvits
  • W. Hajdas
Article

Abstract

We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

Keywords

Descent probe Impactor Europa Habitability Plumes Jupiter Galilean moons Mission Radiation Mass spectrometer Magnetometer Ion sensor Wide-angle camera Radiation monitor 

Notes

Acknowledgements

Funding was provided by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

References

  1. M.F. A’Hearn, M.J.S. Belton, A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, P.H. Schultz, J.M. Sunshine, P.C. Thomas, J. Veverka, D.K. Yeomans, M.W. Baca, I. Busko, C.J. Crockett, S.M. Collins, M. Desnoyer, C.A. Eberhardy, C.M. Ernst, T.L. Farnham, L. Feaga, O. Groussin, D. Hampton, S.I. Ipatov, J.-Y. Li, D. Lindler, C.M. Lisse, N. Mastrodemos, W.M. Owen Jr., J.E. Richardson, D.D. Wellnitz, R.L. White, Deep impact: excavating comet tempel 1. Science 310, 258–264 (2005)ADSCrossRefGoogle Scholar
  2. H.U. Auster, I. Apathy, G. Berghofer, A. Remizov, R. Roll, K.H. Fornacon, K.H. Glassmeier, G. Haerendel, I. Hejja, E. Kührt, W. Magnes, D. Moehlmann, U. Motschmann, I. Richter, H. Rosenbauer, C.T. Russell, J. Rustenbach, K. Sauer, K. Schwingenschuh, I. Szemerey, R. Waeschs, ROMAP: rosetta magnetometer and plasma monitor. Space Sci. Rev. 128, 221–240 (2007). doi: 10.1007/s11214-006-9033-x ADSCrossRefGoogle Scholar
  3. H.U. Auster, K.H. Glassmeier, W. Magnes, O. Aydogar, W. Baumjohann, D. Constantinescu, D. Fischer, K.H. Fornacon, E. Georgescu, P. Harvey, O. Hillenmaier, R. Kroth, M. Ludlam, Y. Narita, R. Nakamura, K. Okrafka, F. Plaschke, I. Richter, H. Schwarzl, B. Stoll, A. Valavanoglou, M. Wiedemann, The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 235–264 (2008)ADSCrossRefGoogle Scholar
  4. H. Balsiger, K. Altwegg, P. Bochsler, P. Eberhardt, J. Fischer, S. Graf, A. Jäckel, E. Kopp, U. Langer, M. Mildner, J. Müller, T. Riesen, M. Rubin, S. Scherer, P. Wurz, S. Wüthrich, E. Arijs, S. Delanoye, J. De Keyser, E. Neefs, D. Nevejans, H. Rème, C. Aoustin, C. Mazelle, J.-L. Médale, J.A. Sauvaud, J.-J. Berthelier, J.-L. Bertaux, L. Duvet, J.-M. Illiano, S.A. Fuselier, A.G. Ghielmetti, T. Magoncelli, E.G. Shelley, A. Korth, K. Heerlein, H. Lauche, S. Livi, A. Loose, U. Mall, B. Wilken, F. Gliem, B. Fiethe, T.I. Gombosi, B. Block, G.R. Carignan, L.A. Fisk, J.H. Waite, D.T. Young, H. Wollnik, ROSINA-Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci. Rev. 128, 745–801 (2007)ADSCrossRefGoogle Scholar
  5. S. Barabash, R. Lundin, H. Andersson, J. Gimholt, M. Holström, O. Norberg, M. Yamauchi, K. Asamura, A.J. Coates, D.R. Linder, D.O. Kataria, C.C. Curtis, K.C. Hsieh, B.R. Sandel, A. Fedorov, A. Grigoriev, E. Budnik, M. Grande, M. Carter, D.H. Reading, H. Koskinen, E. Kallio, P. Riihelä, T. Säles, J. Kozyra, N. Krupp, S. Livi, J. Woch, J. Luhmann, S. McKenna-Lawlor, S. Orsini, R. Cerrulli-Irelli, A. Mura, A. Milillo, E. Roelof, D. Williams, J.-A. Sauvaud, J.-J. Thocaven, D. Winningham, R. Frahm, J. Scherer, J. Sharber, P. Wurz, P. Bochsler, The analyzer of space plasmas and energetic atoms (ASPERA-3) for the mars express mission. ESA-SP 1240, 121–139 (2004)ADSGoogle Scholar
  6. S. Barabash, J.-A. Sauvaud, H. Gunell, H. Andersson, A. Grigoriev, K. Brinkfeldt, M. Holmström, R. Lundin, M. Yamauchi, K. Asamura, W. Baumjohann, T. Zhang, A.J. Coates, D.R. Linder, D.O. Kataria, C.C. Curtis, K.C. Hsieh, B.R. Sandel, A. Fedorov, C. Mazelle, J.-J. Thocaven, M. Grande, H.E.J. Koskinen, E. Kallio, T. Säles, P. Riihelä, J. Kozyra, N. Krupp, J. Woch, J. Luhmann, S. McKenna-Lawlor, S. Orsini, R. Cerulli-Irelli, A. Mura, M. Milillo, M. Maggi, E. Roelof, P. Brandt, C.T. Russel, K. Szego, J.D. Winningham, R.A. Frahm, J. Scherrer, J.R. Sharber, P. Wurz, P. Bochsler, The analyzer of space plasmas and energetic atoms (ASPERA-4) for the venus express mission. Planet. Space Sci. 55, 1772–1792 (2007)ADSCrossRefGoogle Scholar
  7. S. Barabash, A. Bhardwaj, M. Wieser, R. Sridharan, T. Kurian, S. Varier, E. Vijayakumar, V. Abhirami, K.V. Raghavendra, S.V. Mohankumar, M.B. Dhanya, S. Thampi, A. Kazushi, H. Andersson, F. Yoshifumi, M. Holmström, R. Lundin, J. Svensson, S. Karlsson, D. Piazza, P. Wurz, Investigation of the solar wind–moon interaction onboard Chandrayaan-1 mission with the SARA experiment. Curr. Sci. 96, 526–532 (2009)Google Scholar
  8. S. Barabash, P. Wurz, P. Brandt, M. Wieser, M. Holmström, Y. Futaana, G. Stenberg, H. Nilsson, A. Eriksson, M. Tulej, A. Vorburger, N. Thomas, C. Paranicas, D.G. Mitchell, G. Ho, B.H. Mauk, D. Haggerty, J.H. Westlake, M. Fränz, N. Krupp, E. Roussos, E. Kallio, W. Schmidt, K. Szego, S. Szalai, K. Khurana, Xianzhe Jia, C. Paty, R.F. Wimmer-Schweingruber, B. Heber, K. Asamura, M. Grande, H. Lammer, T. Zhang, S. McKenna-Lawlor, S.M. Krimigis, T. Sarris, D. Grodent, Particle Environment Package (PEP), Proceedings of the European Planetary Science Congress, 8, EPSC2013-709 (2013)Google Scholar
  9. M.E. Brown, R.E. Hill, Discovery of an extended sodium atmosphere around Europa. Nature 380, 229–231 (1996)ADSCrossRefGoogle Scholar
  10. M.E. Brown, Potassium in Europa’s atmosphere. Icarus 151, 190–195 (2001)ADSCrossRefGoogle Scholar
  11. O. Camino, J. de Bruin, J. Schoenmaekers, P. Rathsman, J. Kugelberg, P. Bodin, SMART-1 impact on the moon. ESA Bull. 131, 38–45 (2007)ADSGoogle Scholar
  12. CLEO/P Assessment of a Jovian Moon Flyby Mission as Part of NASA Clipper Mission, CDF-154(D), European Space Agency (2015)Google Scholar
  13. CLEO/P Assessment of a Europa Penetrator Mission as Part of NASA Clipper Mission, CDF-154(E), European Space Agency (2015)Google Scholar
  14. A. Colaprete, P. Schultz, J. Heldmann, D. Wooden, M. Shirley, K. Ennico, B. Hermalyn, W. Marshall, A. Ricco, R.C. Elphic, D. Goldstein, D. Summy, G.D. Bart, E. Asphaug, D. Korycansky, D. Landis, L. Sollitt, The detection of water within the LCROSS ejecta plume. Science 330, 463–468 (2010). doi: 10.1126/science.1186986 ADSCrossRefGoogle Scholar
  15. E. Crawley, B. Cameron, D. Selva, System Architecture: Strategy and Product Development for Complex Systems, 1st edn. (Pearson, London, 2015)Google Scholar
  16. J.F. Cooper, R.E. Johnson, B.H. Mauk, H.B. Garrett, N. Gehrels, Energetic Ion and electron irradiation of the Icy Galilean satellites. Icarus 149, 133–159 (2001)ADSCrossRefGoogle Scholar
  17. D.A. Duev, C.G. Molera, S.V. Pogrebenko, L.I. Gurvits, G. Cimò, T.M. Bocanegra Bahamon, Spacecraft VLBI and doppler tracking: algorithms and implementation. Astron. Astrophys. 541, A43 (2012)CrossRefGoogle Scholar
  18. D.A. Duev, S.V. Pogrebenko, G. Cimò, C.G. Molera, T.M. Bocanegra Bahamón, L.I. Gurvits, M.M. Kettenis, J. Kania, V. Tudose, P. Rosenblatt, J.-C. Marty, V. Lainey, P. de Vicente, J. Quick, M. Nicola, A. Neidhardt, G. Kronschnabl, G. Ploetz, R. Haas, M. Lindquist, A. Orlatti, A.V. Ipatov, M.A. Kharinov, A.G. Mikhailov, J.E.J. Lovell, J.N. McCallum, J. Stevens, S.A. Gulyaev, T. Natush, S. Weston, W.H. Wang, B. Xia, W.J. Yang, L.F. Hao, J. Kallunki, O. Witasse, Planetary radio interferometry and doppler experiment (PRIDE) technique: a test case of the mars express Phobos fly-by. Astron. Astrophys. 593, A34 (2016)CrossRefGoogle Scholar
  19. Europa Study 2012 Report; Europa Multiple Flyby Mission, JPL D-71990, National Aeronautics and Space Administration (2012). https://solarsystem.nasa.gov/europa/2012study.cfm
  20. N. Divine, H.B. Garrett, Charged particle distributions in Jupiter’s magnetosphere. Jou. Geophys. Res. 88, 6889–6903 (1983)ADSCrossRefGoogle Scholar
  21. D. Dori, Object-Process Methodology: A Holistic Systems Paradigm (Springer Science and Business Media, Berlin, 2011)CrossRefzbMATHGoogle Scholar
  22. R.G. Forney, D.H. Kindt, W.E. Kirhofer, H.M. Schurmeier, A.E. Wolfe, Ranger VII: a new space instrument. Astron. Acta 11(1), 13–25 (1965)Google Scholar
  23. H. Garrett, R. Evans, Updating the Jovian Proton Radiation Environment—2015, vol. 15 (JPL Publication, no. 9, Pasadena, 2015)Google Scholar
  24. K.H. Glassmeier, I. Richter, A. Diedrich, G. Musmann, U. Auster, U. Motschmann, A. Balogh, C. Carr, E. Cupido, A. Coates, M. Rother, K. Schwingenschuh, K. Szegö, B. Tsurutani, RPC-MAG: the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128, 649–670 (2007)ADSCrossRefGoogle Scholar
  25. J.N. Goswami, M. Annadurai, Curr. Sci. 96, 486–491 (2009)Google Scholar
  26. O. Grasset, M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L.N. Fletcher, H. Hussmann, R. Jaumann, N. Krupp, J.-P. Lebreton, O. Prieto-Ballesteros, P. Tortora, F. Tosi, T. Van Hoolst, JUpiter Icy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterize the Jupiter system. Plan. Sp. Sci. 78, 1–21 (2013)ADSCrossRefGoogle Scholar
  27. W. Hajdas, L. Desorgher, P. Goncalves, C. Pinto, A. Marques, G. Maehlum, D. Meier, Development of radiation hard electron monitor RADEM for ESA JUICE Mission. In EGU General Assembly Conference Abstracts 17, p. 11661 (2015)Google Scholar
  28. W. Hajdas, A. Mrigakshi, In-flight total dose estimation using RADEM instrument on JUICE. J. Appl. Math. Phys. 4(02), 469 (2016)CrossRefGoogle Scholar
  29. D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373(6516), 677–679 (1995)ADSCrossRefGoogle Scholar
  30. D.T. Hall, P.D. Feldman, M.A. McGrath, D.F. Strobel, The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499(1), 475–481 (1998)ADSCrossRefGoogle Scholar
  31. D. Herčík, H.-U. Auster, J. Blum, K.-H. Fornaçon, M. Fujimoto, K. Gebauer, C. Güttler, O. Hillenmaier, A. Hördt, E. Liebert, A. Matsuoka, R. Nomura, I. Richter, B. Stoll, B.P. Weiss, K.-H. Glassmeier, The MASCOT magnetometer. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0236-5 Google Scholar
  32. K.A. Holsapple, The scaling of impact processes in planetary sciences. Ann. Rev. Earth Planet. Sci. 21, 333–373 (1993)ADSCrossRefGoogle Scholar
  33. H.D.R. Evans, E.J. Daly, P. Nieminen, G. Santin, C. Erd, Jovian radiation belt models, uncertainties and margins. IEEE Trans. Nucl. Sci. 60, 2397–2403 (2013)ADSCrossRefGoogle Scholar
  34. W. Huntress, V. Moroz, I. Shevalev, Lunar and planetary robotic exploration missions in the 20th century. Space Sci. Rev. 107, 541–649 (2003). doi: 10.1023/A:1026172301375 ADSCrossRefGoogle Scholar
  35. H. Huybrighs, Y. Futaana, S. Barabash, M. Wieser, P. Wurz, N. Krupp, K.-H. Glassmeier, B. Vermeersen, On the in situ detectability of Europa’s water vapour plumes from a flyby mission. Icarus 289, 270–280 (2017)ADSCrossRefGoogle Scholar
  36. J. Janesick, T. Elliott, J. Andrews, J. Tower, P. Bell, A. Teruya, J. Kimbrough, J. Bishop, in Proceedings SPIE. 9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion III, 921106 (September 10, 2014). Mk x Nk gated CMOS imager. (2014). doi: 10.1117/12.2063524
  37. R.E. Johnson, M.H. Burger, T.A. Cassidy, F. Leblanc, M. Marconi, W.H. Smyth, Composition and detection of europa’s sputter-induced atmosphere, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 507–527Google Scholar
  38. T.V. Johnson, C.M. Yeates, R. Young, Space science reviews volume on Galileo mission overview. Space Sci. Rev. 60, 3–21 (1992)ADSCrossRefGoogle Scholar
  39. M. Jutzi, SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015)ADSCrossRefGoogle Scholar
  40. M. Jutzi, P. Michel, Hypervelocity impacts on asteroids and momentum transfer I. Numerical simulations using porous targets. Icarus 229, 247–253 (2014)ADSCrossRefGoogle Scholar
  41. M.G. Kivelson, K.K. Khurana, M. Volwerk, Europa’s interaction with the Jovian magnetosphere, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 545–570Google Scholar
  42. G. Kminek, J.D. Rummel, COSPAR planetary protection policy, space research today. COSPAR Inf. Bull. 193, 7–19 (2015)Google Scholar
  43. Y.A. Kumar, MIP Project Team, The moon impact probe on Chandrayaan-1. Curr. Sci. 96(4), 540 (2009)Google Scholar
  44. D. Lasi, M. Tulej, S. Meyer, M. Lüthi, A. Galli, D. Piazza, P. Wurz, D. Reggiani, H. Xiao, R. Marcinkowski, W. Hajdas, A. Cervelli, S. Karlsson, T. Knight, M. Grande, S. Barabash, Shielding an MCP detector for a space-borne mass spectrometer against the harsh radiation environment in Jupiter’s magnetosphere. IEEE Trans. Nucl. Sci. 64(1), 605–613 (2017). doi: 10.1109/TNS.2016.2614040 ADSCrossRefGoogle Scholar
  45. J.-P. Lebreton, D.L. Matson, The Huygens probe: science, payload and mission overview. Space Sci. Rev. 104, 59–100 (2002)ADSCrossRefGoogle Scholar
  46. J.-P. Lebreton, O. Witasse, C. Sollazzo, T. Blancquaert, P. Couzin, A.-M. Schipper, J.B. Jones, D.L. Matson, L.I. Gurvits, D.H. Atkinson, B. Kazeminejad, M. Pérez-Ayúcar, An overview of the descent and landing of the Huygens probe on Titan. Nature 438, 758–764 (2005)ADSCrossRefGoogle Scholar
  47. J.J. Liu, X. Ren, X.D. Zou et al., Positioning of the CE-1′s impact site based on CCD image data photographed during the controlled impact on the Moon. Sci. China Earth Sci. 55, 83–89 (2012). doi: 10.1007/s11430-011-4306 CrossRefGoogle Scholar
  48. D.L. Matson, L.J. Soilker, J.-P. Lebreton, The Cassini/Huygens mission to the saturnian system. Space Sci. Rev. 104, 1–58 (2002)ADSCrossRefGoogle Scholar
  49. M.A. McGrath, E. Lellouch, D.F. Strobel, P.D. Feldman, R.E. Johnson, Satellite atmospheres, in Jupiter. The Planet, Satellites and Magnetosphere. Cambridge Planetary Science, vol. 1, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 457–483Google Scholar
  50. M.A. McGrath, C.J. Hansen, A.R. Hendrix, Observations of Europa’s tenuous atmosphere, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 408–505Google Scholar
  51. National Research Council, Preventing the Forward Contamination of Europa (The National Academies Press, Washington, DC, 2000). doi: 10.17226/9895 Google Scholar
  52. R.T. Pappalardo, S. Vance, F. Bagenal, B.G. Bills, D.L. Blaney, D.D. Blankenship, W.B. Brinckerhoff, J.E.P. Connerney, K.P. Hand, T.M. Hoehler, J.S. Leisner, W.S. Kurth, M.A. McGrath, M.T. Mellon, J.M. Moore, G.W. Patterson, L.M. Prockter, D.A. Senske, B.E. Schmidt, E.L. Shock, D.E. Smith, K.M. Soderlund, Astrobiology 13(8), 740–773 (2013). doi: 10.1089/ast.2013.1003 ADSCrossRefGoogle Scholar
  53. C. Paranicas, R.W. Carlson, R.E. Johnson, Electron bombardment of Europa. Geophys. Res. Lett. 28(4), 673–676 (2001)ADSCrossRefGoogle Scholar
  54. C. Paranicas, B.H. Mauk, K. Khurana, I. Jun, H. Garrett, N. Krupp, E. Roussos, Europa’s near-surface radiation environment. Geophys. Res. Lett. 34(15), L15103 (2007). doi: 10.1029/2007GL030834 ADSCrossRefGoogle Scholar
  55. C. Plainaki, T. Cassidy, V. Shematovich, A. Milillo, P. Wurz, A. Vorburger, L. Roth, A. Galli, M. Rubin, A. Blöcker, P. Brandt, F. Crary, I. Dandouras, D. Grassi, P. Hartogh, X. Jia, A. Lucchetti, M. McGrath, V. Mangano, A. Mura, S. Orsini, C. Paranicas, A. Radioti, K. Retherford, J. Saur, B. Teolis, Towards a global unified model of Europa’s tenuous atmosphere. Space Sci. Rev. (2017, submitted)Google Scholar
  56. Proximity-1 Space Link Protocol–Rationale, Architecture, and Scenarios, Informational Report, Management Council of the Consultative Committee for Space Data Systems (CCSDS), Issue 2, CCSDS 210.0-G-2Google Scholar
  57. G.D. Racca, A. Marini, L. Stagnaro, J. van Dooren, L. di Napoli, B.H. Foing, R. Lumb, J. Volp, J. Brinkmann, R. Grünagel, D. Estublier, E. Tremolizzo, M. McKay, O. Camino, J. Schoemaekers, M. Hechler, M. Khan, P. Rathsman, G. Andersson, K. Anflo, S. Berge, P. Bodin, A. Edfors, A. Hussain, J. Kugelberg, N. Larsson, B. Ljung, L. Meijer, A. Mörtsell, T. Nordebäck, S. Persson, F. Sjöberg, SMART-1 mission description and development status. Planet. Space Sci. 50(14–15), 1323–1337 (2002). doi: 10.1016/S0032-0633(02)00123-X ADSCrossRefGoogle Scholar
  58. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Transient water vapor at Europa’s South Pole. Science 343, 171–174 (2014a)ADSCrossRefGoogle Scholar
  59. L. Roth, K.D. Retherford, J. Saur, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. Proc. Natl. Acad. Sci. 111(48), E5123–E5132 (2014b). doi: 10.1073/pnas.1416671111 ADSCrossRefGoogle Scholar
  60. L. Roth, K.D. Retherford, J. Saur, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, J.R. Spencer, C. Grava, A. Blöcker, Europa’s neutral and plasma environment investigated through FUV aurora imaging, EPSC Abstract 2015-453 (2015)Google Scholar
  61. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, J.R. Spencer, A. Blöcker, N. Ivchenko, Europa’s far ultraviolet oxygen aurora from a comprehensive set of HST observations. J. Geophys. Res. Space Phys. 121, 2143–2170 (2016). doi: 10.1002/2015JA022073 ADSCrossRefGoogle Scholar
  62. L. Roth, K.D. Retherford, N. Ivchenko, N. Schlatter, D.F. Strobel, T.M. Becker, C. Grava, Detection of a hydrogen corona in HST Lyα images of Europa in transit of Jupiter. Astrophys. J. (2017). doi: 10.3847/1538-3881/153/2/67 Google Scholar
  63. M. Rubin, X. Jia, K. Altwegg, M. Combi, L.K.S. Daldorff, T.I. Gombosi, K. Khurana, M.G. Kivelson, V.M. Tenishev, G. Tóth, B. van der Holst, P. Wurz, Self-consistent multifluid MHD simulations of Europa’s exospheric interaction with Jupiter’s magnetosphere. J. Geophys. Res. 120, 1–22 (2015). doi: 10.1002/2015JA021149 CrossRefGoogle Scholar
  64. S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Rème, P. Wurz, A novel principle for an ion mirror design in time-of-flight mass spectrometry. Int. J. Mass Spectrom. 251, 73–81 (2006)CrossRefGoogle Scholar
  65. N. Schilling, PhD Thesis, Universität Köln, Germany (2006)Google Scholar
  66. R. Schulz, C. Alexander, H. Boehnhardt, K.-H. Rosetta, Glassmeier—ESA’s mission to the origin of the solar system (Springer, Berlin, 2009)Google Scholar
  67. D.E. Shemansky, Y.L. Yung, X. Liu, J. Yoshii, C.J. Hansen, A.R. Hendrix, L.W. Esposito, A new understanding of the Europa atmosphere and limits on geophysical activity. Astrophys. J. 797(84), 13 (2014)ADSGoogle Scholar
  68. V.I. Shematovich, R.E. Johnson, J.F. Cooper, M.C. Wong, Surface-bounded atmosphere of Europa. Icarus 173, 480–498 (2005)ADSCrossRefGoogle Scholar
  69. W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016). doi: 10.3847/0004-637X/829/2/121 ADSCrossRefGoogle Scholar
  70. W.H. Smyth, M.L. Marconi, Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus 181, 510–526 (2006)ADSCrossRefGoogle Scholar
  71. R. Sridharan, S.M. Ahmed, T.P. Das, P. Sreelatha, P. Pradeepkumar, N. Naik, G. Supriya, The sunlit lunar atmosphere: a comprehensive study by CHACE on the moon impact probe of Chandrayaan-1. Planet. Space Sci. 58, 1567–1577 (2010a). doi: 10.1016/j.pss.2010.07.027 ADSCrossRefGoogle Scholar
  72. R. Sridharan, S.M. Ahmed, T.P. Das, P. Sreelatha, P. Pradeepkumar, N. Naik, G. Supriya, ‘Direct’ evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan-1. Planet. Space Sci. 58, 947–950 (2010b). doi: 10.1016/j.pss.2010.02.013 ADSCrossRefGoogle Scholar
  73. R. Sridharan, S.M. Ahmed, T.P. Das, P. Sreelatha, P. Pradeepkumar, N. Naik, G. Supriya, Corrigendum to “the sunlit lunar atmosphere: a comprehensive study by CHACE on the moon impact probe of Chandrayaan-1”. Planet. Space Sci. 111, 167–168 (2015). doi: 10.1016/j.pss.2014.12.021 ADSCrossRefGoogle Scholar
  74. S.A. Stern, Space Sci. Rev. 140, 3–21 (2008). doi: 10.1007/s11214-007-9295-y ADSCrossRefGoogle Scholar
  75. H. Sugahara, K. Mimura, Shock-induced pyrolysis of amino acids at ultra high pressures ranged from 3.2 to 35.3 GPa. J. Anal. Appl. Pyrolysis 108, 170–175 (2014)CrossRefGoogle Scholar
  76. M. Tulej, S. Meyer, M. Lüthi, D. Lasi, A. Galli, L. Desorgher, W. Hajdas, S. Karlsson, L. Kalla, P. Wurz, Detection efficiency of microchannel plates for e- and π- in the momentum range from 17.5 to 345 MeV/c. Rev. Sci. Instr. 86(083310), 1–12 (2015). doi: 10.1063/1.4928063 Google Scholar
  77. M. Tulej, S. Meyer, M. Lüthi, D. Lasi, A. Galli, D. Piazza, L. Desorgher, D. Reggiani, W. Hajdas, S. Karlsson, L. Kalla, P. Wurz, Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter’s moon Europa. Nucl. Instr. Methods B383, 21–37 (2016). doi: 10.1016/j.nimb.2016.06.008 ADSCrossRefGoogle Scholar
  78. A. Vorburger, P. Wurz, H. Lammer, S. Barabash, O. Mousis, Monte-Carlo simulation of Callisto’s exosphere. Icarus 262, 14–29 (2015)ADSCrossRefGoogle Scholar
  79. A. Vorburger, P. Wurz, Monte-Carlo simulation of Europa’s exosphere, Icarus, submitted (2017)Google Scholar
  80. P. Wurz, N. Thomas, D. Piazza, M. Jutzi, W. Benz, S. Barabash, M. Wieser, W. Baumjohann, W. Magnes, H. Lammer, K. H. Glaßmeier, U. Auster, L. Gurvits, The Callisto Descent Probe, European Planetary Science Congress, 2009, Vol. 4, EPSC2009-375-2 (2009)Google Scholar
  81. P. Wurz, S. Barabash, N. Thomas, J. Fischer, D. Piazza, M. Jutzi, W. Benz, M. Wieser, W. Baumjohann, W. Magnes, H. Lammer, K. H. Glaßmeier, U. Auster, S. Pogrebenko, L. Gurvits, G. Managadze, The Callisto Descent Probe, 9th International Planetary Probe Workshop (IPPW-9), Toulouse, France, 16th–22nd June 2012 (2012a)Google Scholar
  82. P. Wurz, D. Abplanalp, M. Tulej, H. Lammer, A neutral gas mass spectrometer for the investigation of lunar volatiles. Planet. Sp. Sci. 74, 264–269 (2012b)Google Scholar
  83. P. Wurz, A. Vorburger, A. Galli, M. Tulej, N. Thomas, Y. Alibert, S. Barabash, M. Wieser, H. Lammer, Measurement of the Atmospheres of Europa, Ganymede, and Callisto, European Planetary Science Congress 2014, EPSC Abstracts, Vol. 9, Id. EPSC2014-504Google Scholar
  84. P. Wurz, S.A. Fuselier, E. Möbius, H.O. Funsten, P.C. Brandt, F. Allegrini, A.G. Ghielmetti, R. Harper, E. Hertzberg, P. Janzen, H. Kucharek, D.J. McComas, E.C. Roelof, L. Saul, J.A. Scheer, M. Wieser, Y. Zheng, IBEX backgrounds and signal to noise. Space Sci. Rev. 146, 173–206 (2009)ADSCrossRefGoogle Scholar
  85. T.L. Zhang, G. Berghofer, W. Magnes, M. Delva, W. Baumjohann, H. Biernat, H. Lichtenegger, R. Nakamura, K. Schwingenschuh, H.-U. Auster, K.-H. Fornacon, I. Richter, K.-H. Glassmeier, C. Carr, A. Balogh, S. Barabash, K. Kudela, M. Balikhin, C.T. Russell, U. Motschmann, J.-P. Lebreton, MAG: the fluxgate magnetometer of venus express. ESA-SP 1295, 1–10 (2007)Google Scholar
  86. O. Ziyuan, L. Chunlai, Z. Yongliao, Z. Hongbo, L. Chang, L. Jianzhong, L. Jianjun, Z. Wei, S. Yan, W. Weibin, B. Wei, Z. Baochang, W. Jianyu, Y. Jianfeng, C. Jin, W. Huanyu, Z. Xiaohui, W. Shijin, W. Min, R. Xin, M. Lingli, K. Deqing, W. Xiaoqian, W. Fang, G. Liang, Z. Zhoubin, Z. Lei, Z. Xinying, Z. Yongchun, L. Junduo, Z. Xiaoduan, X. Chun, S. Shuobiao, G. Yifei, G. Guannan, Chang’E-1 lunar mission: an overview and primary science results. Chin. J. Space Sci. 30(5), 392–403 (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Physikalisches InstitutUniversity of BernBernSwitzerland
  2. 2.Swedish Institute of Space PhysicsKirunaSweden
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria
  4. 4.Institut f. Geophysik u. Extraterrestrische PhysikTechnische UniversitätBrunswickGermany
  5. 5.Joint Institute for VLBI ERICDwingelooThe Netherlands
  6. 6.Department of Astrodynamics and Space MissionsDelft University of TechnologyDelftThe Netherlands
  7. 7.Paul Scherrer InstituteVilligenSwitzerland

Personalised recommendations