The EURONEAR Lightcurve Survey of Near Earth Asteroids

Abstract

This data paper presents lightcurves of 101 near Earth asteroids (NEAs) observed mostly between 2014 and 2017 as part of the EURONEAR photometric survey using 11 telescopes with diameters between 0.4 and 4.2 m located in Spain, Chile, Slovakia and Romania. Most targets had no published data at the time of observing, but some objects were observed in the same period mainly by B. Warner, allowing us to confirm or improve the existing results. To plan the runs and select the targets, we developed the public Long Planning tool in PHP. For preliminary data reduction and rapid follow-up planning we developed the LiDAS pipeline in Python and IRAF. For final data reduction, flux calibration, night linkage and Fourier fitting, we used mainly MPO Canopus. Periods of 18 targets are presented for the first time, and we could solve or constrain rotation for 16 of them. We secured periods for 45 targets (\(U\sim 3\)), found candidate periods for other 16 targets (\(U\sim 2\)), and we propose tentative periods for other 32 targets (\(U\sim 1\)). We observed 7 known or candidate binary NEAs, fiting 3 of them (2102 Tantalus, 5143 Heracles and 68348). We observed 8 known or candidate tumbling NEAs, deriving primary periods for 3 objects (9400, 242708 and 470510). We evidenced rapid oscillations (few minutes) and could fit fast tentative periods TP2 for 5 large newly suggested tumbling or binary candidates (27346, 112985, 285625, 377732, 408980), probably discovering at least one new binary NEA (2011 WO41). We resolved periods of 4 special objects which include two proposed space mission targets (163249 and 101955 Bennu), one very fast rotator NEA discovered by EURONEAR (2014 NL52) and the “Halloween asteroid” (2015 TB145). Using Mercator in simultaneous 3 band MAIA imaging, we could evidence for the first time clear variation in the color lightcurves of 10 NEAs. The periods derived from the gr color lightcurves are found to match individual band period fits for 4 NEAs (27346, 86067, 112985 and 275976).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    http://www.minorplanet.info/lightcurvedatabase.html.

  2. 2.

    http://www.euronear.org.

  3. 3.

    http://www.euronear.org/tools/longplan.php.

  4. 4.

    http://www.naic.edu/~nolan/astorb.html.

  5. 5.

    IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

  6. 6.

    http://www.minorplanetobserver.com/MPOSoftware/MPOCanopus.htm.

  7. 7.

    http://www.euronear.org/manuals/Canopus-EURONEAR-Cookbook.pdf.

  8. 8.

    http://earn.dlr.de.

  9. 9.

    http://www.alcdef.org.

  10. 10.

    http://www.minorplanet.info/datazips/LCDB_readme.txt.

  11. 11.

    https://echo.jpl.nasa.gov/~lance/binary.neas.html.

  12. 12.

    http://www.minorplanet.info/datazips/LCDB_readme.txt.

  13. 13.

    http://newton.dm.unipi.it/neodys.

  14. 14.

    https://obswww.unige.ch/~behrend/page5cou.html#09db1o.

  15. 15.

    https://www.jpl.nasa.gov/news/news.php?release=2013-287.

  16. 16.

    http://www.jpl.nasa.gov/news/news.php?feature=4760.

  17. 17.

    https://www.nasa.gov/osiris-rex.

  18. 18.

    http://www.minorplanet.info/call.html.

References

  1. A. Aznar Macias, et. al. EURONEAR—First Lightcurves and Physical Properties of Near Earth Asteroids, accepted, Rom. J. Phys. http://www.nipne.ro/rjp/accepted_papers.html (2017)

  2. A. Aznar Macias, Propiedades fisicas del NEA binario 5143 Heracles (in Spanish), to be published in AstronomíA Magazine 215, 44 (2017)

  3. L. Benner et al., Radar observations of asteroid 1999 JM8. Meteor. Planet. Sci. 37(6), 779 (2002)

    ADS  Article  Google Scholar 

  4. W.F. Bottke Jr., H.J. Melosh, Binary asteroids and the formation of doublet craters. Icarus 124, 372 (1996)

    ADS  Article  Google Scholar 

  5. E. Bowell et al., A possible satellite of Herculina. Bull. Am. Astron. Soc. 10, 594 (1978)

    ADS  Google Scholar 

  6. A. Carbognani, Asteroids lightcurves at OAVDA: 2013 Dec–2014 Jun (21374, 242708). Minor Planet Bull. 41, 265 (2014)

    ADS  Google Scholar 

  7. A. Carbognani, L. Buzzi, Asteroids lightcurves analysis: 2015 Oct–Dec (337866). Minor Planet Bull. 43, 162 (2016)

    ADS  Google Scholar 

  8. A. Cellino et al., Genetic inversion of sparse disk-integrated photometric data of asteroids: application to Hipparcos data. Astron. Astrophys. 506, 935 (2009)

    ADS  Article  Google Scholar 

  9. A. Cellino et al., Do we observe light curves of binary asteroids? Astron. Astrophys. 144, 355 (1985)

    ADS  Google Scholar 

  10. R. Cornea, O. Vaduvescu, M. Predatu. EURONEAR NEA Lightcurve Survey Tenerife 2015, in work (2017)

  11. R. Dymock, R. Miles, A method for determining the V magnitude of asteroids from CCD images. J. Br. Astron. Assoc. 119(3), 149 (2009)

    ADS  Google Scholar 

  12. L. Elenin et al., Low amplitude lightcurve for km-sized NEA (285944) 2001 RZ11. Minor Planet Bull. 42, 34 (2015)

    ADS  Google Scholar 

  13. A. Galád et al., Joint lightcurve observations of 10 near-earth Asteroids from Modra and Ondřejov. Earth Moon Planet. 97, 147 (2005)

    ADS  Article  Google Scholar 

  14. A.W. Harris et al., Photoelectric observations of asteroids 3, 24, 60, 261, and 863. Icarus 77(1), 171 (1989)

    ADS  Article  Google Scholar 

  15. A.W. Harris, Tumbling Asteroids. Icarus 107, 209 (1994)

    ADS  Article  Google Scholar 

  16. C.W. Hergenrother et al., Lightcurve and Phase Function Photometry of the OSIRIS-REx Target (101955) 1999 RQ36, 43rd Lunar and Planetary Science Conference (Texas, USA, 2012)

  17. C.W. Hergenrother et al., Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 226, 663 (2013)

    ADS  Article  Google Scholar 

  18. J.A. Howell, Lightcurve analysis of NEA 3352 McAuliffe. Minor Planet Bull. 39, 157 (2012)

    ADS  Google Scholar 

  19. R.S. Hudson, S.J. Ostro, Shape and non-principal axis spin state of asteroid 4179 Toutatis. Science 270(5233), 84 (1995)

    ADS  Article  Google Scholar 

  20. M. Kaasalainen, Interpretation of lightcurves of precessing asteroids. Astron. Astrophys. 376, 302 (2001)

    ADS  Article  Google Scholar 

  21. D. Kinoshita et al., Surface heterogeneity of 2005 UD from photometric observations. Astron. Astrophys. 466, 1153 (2007)

    ADS  Article  Google Scholar 

  22. B. Koehn et al., Lowel observatory NEA photometric survey (NEAPS)—Jan–Jun 2009 (2009 DO111). Minor Planet Bull. 41, 295 (2009)

    Google Scholar 

  23. Y.N. Krugly et al., The near-earth objects follow-up program. IV. CCD Photometry in 1996–1999. Icarus 158(2), 294 (2002)

    ADS  Article  Google Scholar 

  24. T. Kwiatkowski et al., Photometric survey of the very small near-earth asteroids with the SALT telescope. I. Lightcurves and periods for 14 objects. Astron. Astrophy. 509, 94 (2005)

    Article  Google Scholar 

  25. T. Kwiatkowski, Photometric survey of the very small near-earth asteroids with the SALT telescope. II. Discussion of YORP. Astron. Astrophys. 509, 95 (2005)

    Article  Google Scholar 

  26. T. Kwiatkowski et al., Photometric survey of the very small near-Earth asteroids with the SALT telescope. III. Lightcurves and periods for 12 objects and negative detections. Astron. Astrophys. 511, 49 (2005)

    Article  Google Scholar 

  27. J.L. Margot et al., Binary asteroids in the near-earth object population. Science 296, 1445 (2002)

    ADS  Article  Google Scholar 

  28. J. Masiero et al., The thousand asteroid light curve survey. Icarus 204, 145 (2009)

    ADS  Article  Google Scholar 

  29. W.J. Merline et al., Discovery of a moon orbiting the asteroid 45 Eugenia. Nature 401, 565 (1999)

    ADS  Article  Google Scholar 

  30. W.J. Merline, et al. Asteroids Do Have Satellites. in Asteroids III, p. 289, 785 pages, (Univ of Arizona Press, 2002)

  31. S. Mottola et al., The slow rotation of 253 Mathilde. Space Sci. 43, 1609 (1995)

    ADS  Article  Google Scholar 

  32. T.G. Muller et al., Large Halloween asteroid at lunar distance. Astron. Astrophys. 598, 63 (2017)

    Article  Google Scholar 

  33. M.C. Nolan et al., Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226, 629 (2013)

    ADS  Article  Google Scholar 

  34. F. Ochsenbein et al., The VizieR database of astronomical catalogues. Astron. Astrophys. 143, 23 (2000)

    ADS  Google Scholar 

  35. J. Oey, R. Groom, Photometric observations of near-earth asteroid (348400) 2005 JF21. Minor Planet Bull. 43, 208 (2016)

    ADS  Google Scholar 

  36. B.D. Pilcher, Rotation period determination of 5143 Heracles. Minor Planet Bull. 39, 148 (2012)

    ADS  Google Scholar 

  37. D. Polishook et al., Asteroid rotation periods from the Palomar Transient Factory survey. Mon. Not. R. Astron. Soc. 421, 2094 (2012)

    ADS  Article  Google Scholar 

  38. M. Popescu et al., Spectral properties of eight near-earth asteroids. Astron. Astrophys. 535, 15 (2011)

    Article  Google Scholar 

  39. M. Popescu et al., Spectral properties of the largest asteroids associated with Taurid Complex. Astron. Astrophys. 572, 106 (2014)

    Article  Google Scholar 

  40. M. Popescu, et. al., Visible spectra of near-Earth asteroids obtained with the Isaac Newton Telescope, to be submitted soon (2017)

  41. P. Pravec et al., CCD photometry of 6 near-earth asteroids. Earth Moon Planet. 71, 177 (1995)

    ADS  Article  Google Scholar 

  42. P. Pravec et al., Lightcurves of 7 near-earth asteroids. Icarus 124, 471 (1996)

    ADS  Article  Google Scholar 

  43. P. Pravec et al., The near-earth objects follow-up program II. Results for 8 asteroids from 1982 to 1995. Icarus 130, 275 (1997)

    ADS  Article  Google Scholar 

  44. P. Pravec, G. Hahn, Two-period lightcurve of 1994 AW1: indication of a binary asteroid? Icarus 127, 431 (1997)

    ADS  Article  Google Scholar 

  45. P. Pravec et al., Lightcurves of 26 near-earth asteroids. Icarus 136, 124 (1998)

    ADS  Article  Google Scholar 

  46. P. Pravec et al., Occultation/eclipse events in binary asteroid 1991 VH. Icarus 133, 79 (1998)

    ADS  Article  Google Scholar 

  47. P. Pravec et al., Two periods of 1999 HF1—another binary NEA candidate. Icarus 158, 276 (2002)

    ADS  Article  Google Scholar 

  48. P. Pravec et al., Tumbling asteroids. Icarus 173, 108 (2005)

    ADS  Article  Google Scholar 

  49. P. Pravec et al., Photometric survey of binary near-earth asteroids. Icarus 181, 63 (2006)

    ADS  Article  Google Scholar 

  50. P. Pravec, et. al., NEA rotations and binaries, in Near Earth Objects, our Celestial Neighbors: Opportunity and Risk, Proceedings of IAU Symposium 236. (Cambridge University Press, Cambridge, 2007) p. 167

  51. P. Pravec, A.W. Harris, Binary asteroid population. 1. Angular momentum content. Icarus 190, 250 (2007)

    ADS  Article  Google Scholar 

  52. P. Pravec et al., Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries. Icarus 218, 125 (2012)

    ADS  Article  Google Scholar 

  53. P. Pravec et al., The tumbling spin state of (99942) Apophis. Icarus 233, 48 (2014)

    ADS  Article  Google Scholar 

  54. P. Pravec et al., Binary asteroid population. 3. Secondary rotations and elongations. Icarus 267, 267 (2016)

    ADS  Article  Google Scholar 

  55. E.G. Rivera-Valentin et al., (163693) ATIRA (binary detection). CBET 4347, 1 (2017)

    ADS  Google Scholar 

  56. T. Sekiguchi et al., Bicolour lightcurve of TNO 1996 TO66 with the ESO-VLT. Astron. Astrophys. 385, 281 (2002)

    ADS  Article  Google Scholar 

  57. B. Skiff, Posting on CALL web site. http://www.minorplanet.info/call.html (2011)

  58. B. Skiff et al., Lowell observatory near-earth asteroid photometric survey (NEAPS)—2008 May through 2008 December. Minor Planet Bull. 39, 111 (2012)

    ADS  Google Scholar 

  59. J.R. Spencer et al., The lightcurve of 4179 Toutatis: evidence for complex rotation. Icarus 117, 71 (1995)

    ADS  Article  Google Scholar 

  60. R.F. Stellingwerf, Period determination using phase dispersion minimization. Astrophys. J. Part 1 224, 953 (1978)

    ADS  Article  Google Scholar 

  61. A. Thirouin et al., The mission accessible near-earth objects survey (MANOS): first photometric results. Astron. J. 152, 163 (2016)

    ADS  Article  Google Scholar 

  62. O. Vaduvescu, First EURONEAR NEA discoveries from La Palma using the INT. Mon. Notices R. Astron. Soc. 449, 1614 (2015)

    ADS  Article  Google Scholar 

  63. B.D. Warner, A Practical Guide to Lightcurve Photometry and Analysis, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  64. B.D. Warner, The asteroid lightcurve database. Icarus 202, 134 (2009)

    ADS  Article  Google Scholar 

  65. B.D. Warner, Asteroid lightcurve analysis at palmer divide observatory: 2011 Dec–2012 Mar (3352 McAuliffe). Minor Planet Bull. 39, 158 (2012)

    ADS  Google Scholar 

  66. B.D. Warner, R. Megna, Lightcurve analysis of NEA (192642) 1999 RD32. Minor Planet Bull. 39, 154 (2012)

    ADS  Google Scholar 

  67. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jan–Mar (68031). Minor Planet Bull. 41, 159 (2014)

    ADS  Google Scholar 

  68. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Mar–Jun (21374). Minor Planet Bull. 41, 214 (2014)

    ADS  Google Scholar 

  69. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Mar–Jun (2014 CU13). Minor Planet Bull. 41, 160 (2014)

    ADS  Google Scholar 

  70. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2013 Sep–Dec (411280 = 2010 SL13). Minor Planet Bull. 41, 115 (2014)

    ADS  Google Scholar 

  71. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2013 Jun–Sep (9950 ESA). Minor Planet Bull. 41, 41 (2014)

    ADS  Google Scholar 

  72. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Jan–Mar (410088, 416151 and 427684). Minor Planet Bull. 42, 177 (2015)

    ADS  Google Scholar 

  73. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Jan–Mar (159533). Minor Planet Bull. 42, 119 (2015)

    ADS  Google Scholar 

  74. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Jan–Mar (90416). Minor Planet Bull. 42, 175 (2015)

    ADS  Google Scholar 

  75. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Jan–Mar (2014 QK434). Minor Planet Bull. 42, 178 (2015)

    ADS  Google Scholar 

  76. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Jan–Mar (39796). Minor Planet Bull. 42, 174 (2015)

    ADS  Google Scholar 

  77. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (86326). Minor Planet Bull. 42, 115 (2015)

    ADS  Google Scholar 

  78. B.D. Warner, (399307) 1991 RJ2: a new NEA binary discovery. Minor Planet Bull. 42, 37 (2015)

    ADS  Google Scholar 

  79. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (408980 = 2002 RB126). Minor Planet Bull. 42, 49 (2015)

    ADS  Google Scholar 

  80. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (2014 SS1). Minor Planet Bull. 42, 50 (2015)

    ADS  Google Scholar 

  81. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (162980). Minor Planet Bull. 42, 46 (2015)

    ADS  Google Scholar 

  82. B.D. Warner, A quartet of NEA binary candidates (2102 Tantalus and 68348). Minor Planet Bull. 42, 79 (2015)

    ADS  Google Scholar 

  83. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (391033). Minor Planet Bull. 42, 47 (2015)

    ADS  Google Scholar 

  84. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (112985). Minor Planet Bull. 42, 259 (2015)

    ADS  Google Scholar 

  85. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (86067). Minor Planet Bull. 42, 172 (2015)

    ADS  Google Scholar 

  86. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (85713). Minor Planet Bull. 42, 43 (2015)

    ADS  Google Scholar 

  87. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2014 Jun–Oct (429584). Minor Planet Bull. 42, 172 (2015)

    ADS  Google Scholar 

  88. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Apr–Jul (141354). Minor Planet Bull. 43, 315 (2016)

    ADS  Google Scholar 

  89. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Jan–Apr (450160 = 2000 RM12). Minor Planet Bull. 43, 245 (2016)

    ADS  Google Scholar 

  90. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Jan–Apr (337866). Minor Planet Bull. 43, 244 (2016)

    ADS  Google Scholar 

  91. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Apr–Jul (9400). Minor Planet Bull. 43, 312 (2016)

    ADS  Google Scholar 

  92. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Jun–Sep (9400, 112985). Minor Planet Bull. 43, 67 (2016)

    ADS  Google Scholar 

  93. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2015 Oct–Dec (112985). Minor Planet Bull. 43, 146 (2016)

    ADS  Google Scholar 

  94. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Apr–Jul (388945). Minor Planet Bull. 43, 311 (2016)

    ADS  Google Scholar 

  95. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Oct–Dec (3352). Minor Planet Bull. 44, 98 (2017)

    ADS  Google Scholar 

  96. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Jul–Sep (3352 McAuliffe). Minor Planet Bull. 44, 23 (2017)

    ADS  Google Scholar 

  97. B.D. Warner, NEA lightcurve analysis at CS3-PDS: 2016 Jul–Sep (470510). Minor Planet Bull. 44, 30 (2017)

    ADS  Google Scholar 

  98. B.D. Warner, A. Aznar, A. Sotta, Lightcurve analysis of the NEA 2016 NL15. Minor Planet Bull. 44(2), 157 (2017)

  99. A. Waszczak et al., Asteroid light curves from the Palomar Transient Factory survey: rotation periods and phase functions from sparse photometry. Astron. J. 150, 75 (2015)

    ADS  Article  Google Scholar 

  100. F. Yoshida et al., Photometric observations of a very young family-member asteroid (832) Karin. Publ. Astron. Soc. Jpn. 56, 1105 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to P. Pravec (Ondřejov Observatory, Czech Republic) for his Asteroid Light Curve (ALC) software used in the data analysis in Modra and for help with fast data transfer of the Danish images. Many thanks are due to Brian Warner for his prompt answers regarding the use of his excellent software MPO Canopus (http://www.minorplanetobserver.com/MPOSoftware/MPOCanopus.htm). The data reduction at Modra was carried out using MaxIm DL (http://diffractionlimited.com/product/maxim-dl) and Astrometrica (http://www.astrometrica.at) software and CMC14 star catallogue (Dymock and Miles 2009). This research has made use of SAOImage DS9, developed by Smithsonian Astrophysical Observatory. This research has made use of the VizieR catalog access tool, CDS, Strasbourg, France. The original description of the VizieR service was published by Ochsenbein et al. (2000). The Isaac Newton Telescope (INT) and William Herschel Telescope (WHT) are operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The INT data was acquired by O. Vaduvescu, ING students and collaborators during the Dutch observing runs W14BN008 and W15BN004, some IAC and ING service programs. Part of the work was based on observations made by O. Vaduvescu and students (run 83-Mercator4) with the Mercator Telescope, operated by the Flemish Community on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The Bennu data was secured by J. Licandro based on service observations (program SW2011a31) acquired with the William Herschel Telescope (WHT). The data collected at Cerro Tololo (CTIO 0.9 m) and La Silla (Danish 1.5 m) was based on the Chilean observing time granted to E. Unda-Sanzana (CNTAC program CN2014B-47), while the Caisey SON data was obtained via collaboration between the Universidad de Antofagasta and the SON program owners. The private remote facility IAO-T35 is owned by A. Aznar in the Spanish province of Valencia. All other accessed facilities, namely Buc-T50, Mod-T60, OT-IAC80 and OSN-T90 are owned by public institutions to which the co-authors are affiliated. J. Licandro and M. Serra-Ricart acknowledge support from the project AYA2015-67772-R (MINECO, Spanish Ministry of Economy and Competitiveness). This research was partially based on observations carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofísica de Andalucía (CSIC). P. Santos-Sanz would like to acknowledge financial support by the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378, the Spanish grant AYA-2014-56637-C2-1-P and the Proyecto de Excelencia de la Junta de Andalucá J.A. 2012-FQM1776. The work at Modra was supported by the Slovak Grant Agency for Science VEGA, Grant 1/0911/17. N. Peixinho acknowledges funding by the Gemini-Conicyt Fund, allocated to project No. 32120036 and by the Portuguese FCT—Foundation for Science and Technology and the European Social Fund (ref: SFRH/BGCT/113686/2015). CITEUC is funded by National Funds through FCT—Foundation for Science and Technology (project: UID/Multi/00611/2013) and FEDER—European Regional Development Fund through COMPETE 2020—Operational Programme Competitiveness and Inter- nationalisation (project: POCI-01-0145-FEDER-006922). R. Toma acknowledges funding her La Palma trip to Armagh Observatory, which is core funded by the Northern Ireland Government. The work of M. Popescu was supported by a grant of from Campus Atlantico Tricontinental run by the Univesidad de Las Palmas de Gran Canaria and Universidad de La Laguna, under Programa Talento Tricontinental 2014 (http://www.ceicanarias.com). Thanks to P. Rodriguez-Gil for serving as IAC CAT observer to acquire data for target 143409 with the ORM-INT. Four Chilean students assisted on training to the SON remote observations (J. P. Colque Saavedra, G. Aravena, A. Herrera and Y. Gomez), and two ING students attended one night training which included some ORM-INT observations (L. Peralta and P. Sowicka). The training in La Palma of the Romanian amateur Radu Cornea was made possible with the support of the Isaac Newton Group in the preparation of the long observing run (5 months) in Tenerife which was sponsored by the following private entities from Sibiu, Romania: Cotidianul Sibiu 100%, the companies Mainetti, Banca Comerciala Carpatica, Farmacia alphaMed, Policlinica ASTRA, SIMPA, Biotechnik, Fritzmeier, Euroconf, Docs Softmedical and Mitropolia Ardealului. Acknowledgements are due to the two anonymous referees whose comments improved our paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Vaduvescu.

Appendix: Plots of Poorly Observed Objects

Appendix: Plots of Poorly Observed Objects

See Figs. 12, 13, 14, 15, 16 and 17.

Fig. 12
figure12

Lightcurves of NEAs poorly observed with BUC-T50

Fig. 13
figure13figure13

Lightcurves of NEAs poorly observed with MOD-T60

Fig. 14
figure14figure14figure14figure14

Lightcurves of NEAs poorly observed with ORM-Mercator telescope

Fig. 15
figure15figure15

Lightcurves of NEAs poorly observed with LS-Danish telescope

Fig. 16
figure16figure16figure16

Lightcurves of NEAs poorly observed with ORM-INT telescope

Fig. 17
figure17

Lightcurve of PHA Bennu poorly observed with ORM-WHT telescope

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaduvescu, O., Macias, A.A., Tudor, V. et al. The EURONEAR Lightcurve Survey of Near Earth Asteroids. Earth Moon Planets 120, 41–100 (2017). https://doi.org/10.1007/s11038-017-9506-9

Download citation

Keywords

  • Near Earth asteroids
  • Lightcurves
  • Rotation periods
  • Binary asteroids
  • Tumbling asteroids