Abstract
The Valles Marineris canyon system in Mars shows large landslides across its walls, which can be 40 km wide and up to 60 km long, with fall scarps height as high as 7 km. These landslides were produced through a large mass movement at high speed by gravity across the trough floor. Although the triggering factors are unclear, several mechanisms have been proposed as, among others, large amounts of subsurface water, quake produced through normal faulting close to the canyon walls, and meteoritic impacts. In this work we examine the limit equilibrium slope stability of three landslides (placed respectively at Ius, Candor, and Melas Chasmata), which can be considered representative, with the aims of constraining their formation conditions. Our results suggest that external factors (as high pore fluid pressure, seismic loading or rock mass disturbance) do not seem necessary for the failure of slopes if they are composed of unconsolidated materials, while high pore water pressure or ground acceleration are needed to trigger slides in slopes composed of strong basaltic-like materials. Moreover, the presence of sub-surface ice would contribute to slope stability. As a whole, our findings point to ground shaking due to meteorite impacts as the main triggering force for most landslides in the Valles Marineris.
This is a preview of subscription content, access via your institution.



References
L.W. Abramson, T.S. Lee, S. Sharma, G.M. Boyce, Slope Stability and Stabilization Methods, 2nd edn. (Wiley, New York, 2001), p. 736
R.C. Anderson, J.M. Dohm, M.P. Golombek, A.F. Haldemann, B.J. Franklin, K.L. Tanaka, J. Lias, B. Peer, J. Geophys. Res. 106, 20563–20585 (2001)
A. Aydan, R. Ulusay, Eng. Geol. 69, 245–272 (2003)
F. Bigot-Cormier, D.R. Montgomery, Earth Planet. Sci. Lett. 260, 179–186 (2007)
W.B. Boynton et al., Science 297, 81–85 (2002)
M.T. Brunetti, F. Guzzetti, M. Cardinelli, F. Fiorucci, M. Santangelo, P. Mancinelli, G. Komatsu, L. Borselli, Earth Planet. Sci. Lett. 405, 156–168 (2014)
M.G. Chapman, in Volcano-ice interactions on earth and mars, vol. 202, ed. by J.L. Smellie, M.G. Chapman (Geological Society Special Publications, London, 2002), pp. 273–293
S.M. Clifford, J. Lasue, E. Heggy, J. Boisson, P. McGovern, M.D. Max, J. Geophys. Res. 115, E07001 (2010)
G.B. Crosta, S. Utili, F.V. De Blaso, R. Castellanza, Earth Planet. Sci. Lett. 388, 329–342 (2014)
F.V. De Blasio, Planet. Space Sci. 59, 1384–1392 (2012)
J.M. Dohm, J.C. Ferris, V.R. Baker, R.C. Anderson, T.M. Hare, R.G. Strom, N.G. Barlow, K.L. Tanaka, J.E. Klemaszewski, D.H. Scott, J. Geophys. Res. 106, 32943–32958 (2001)
J.M. Dohm et al., J. Volcanol. Geotherm. Res. 185, 12–27 (2009)
G. Dromart, C. Quantin, O. Broucke, Geology 35, 363–366 (2007)
E. Eberhardt, Rock Mech. Rock Eng. 45, 981–988 (2012)
P. Frattini, G.B. Crosta, F. De Blasio, R. Castellanza, S. Utili, A. Lucas, in Proceedings of the 45th Lunar and Planetary Science Conference. Abstract 2024 (2014)
K.P. Harrison, R.E. Grimm, Icarus 163, 347–362 (2003)
W.K. Hartmann, G. Neukum, Space Sci. Rev. 96, 165–194 (2001)
E. Hoek, C. Carranza-Torres, B. Corkum, Proc. NARMS-TAC Conf. 1, 267–273 (2002)
B.M. Hynek, R.J. Phillips, R.E. Arvidson, J. Geophys. Res. 108(E9), 5111 (2003)
G. Komatsu, G.G. Ori, P. Ciarcelluti, Y.D. Litasov, Planet. Space Sci. 52, 167–187 (2004)
A. Lucas, A. Mangeney, D. Mège, F. Bouchut, J. Geophys. Res. 116, E10001 (2011)
B.K. Lucchitta, A.S. McEwen, G.D. Clow, P.E. Geissler, R.B. Singer, R.A. Schultz, S.W. Squyres, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 453–492
B.K. Lucchitta, Geologic map of Ophir and Central Candor Chasmata (MTM -05072) of Mars, U.S. Geol. Surv. Misc. Invest. Ser. Map, I-2568 (1999)
N. Mangold, D. Baratoux, V. Frey, in Second International Conference on Mars Polar Science and Exploration, vol 1, p. 121 (2000)
A.S. McEwen, M.C. Malin, M.H. Carr, W.K. Hartmann, Nature 397, 584–586 (1999)
D.T. Möhlmann, Icarus 168, 318–323 (2004)
D.P. Neuffer, R.A. Schultz, Q. J. Eng. Geol. Hydrogeol. 39, 227–240 (2006)
A. Özsan, H. Basarir, Eng. Geol. 68, 319–331 (2003)
J.-P. Peulvast, D. Mège, J. Chiciak, F. Costard, P.L. Masson, Geomorphology 37, 329–352 (2001)
C. Quantin, P. Allemand, C. Delacourt, Planet. Space Sci. 52, 1011–1022 (2004a)
C. Quantin, P. Allemand, N. Mangold, C. Delacourt, Icarus 172, 555–572 (2004b)
J. Ruiz, P.J. McGovern, A. Jiménez-Díaz, V. López, J.-P. Williams, B.C. Hahn, R. Tejero, Icarus 215, 508–517 (2011)
R.A. Schultz, J. Geophys. Res. 96, 22777–22792 (1991)
R.A. Schultz, Planet. Space Sci. 46, 827–834 (1998)
R.A. Schultz, Geophys. Res. Lett. 29, 1932 (2002)
D.L. Shuster, B.P. Weiss, Science 309, 594–597 (2005)
D.E. Smith et al., J. Geophys. Res. 106, 23689–23722 (2001)
V. Soukhovitskaya, M. Manga, Icarus 180, 348–352 (2006)
C.-Y. Wang, M. Manga, A. Wong, Icarus 175, 551–555 (2005)
J. Watkins, B.E. Elhmann, A. Yin, Geology 43, 107–110 (2015)
C.M. Weitz, T.J. Parker, M.H. Bulmer, F.S. Anderson, J.A. Grant, J. Geophys. Res. 108, 8082 (2003)
P. Wessel et al., EOS Trans. AGU 94, 409–410 (2013)
D.R. Wines, P.A. Lilly, Aust. Geomechanics 36(4), 59–72 (2001)
A. Yin, Lithosphere 4(4), 286–330 (2012)
Acknowledgments
We thank the comments from James Dohm and an anonymous reviewer. Also, we would like to thank Federico Mansilla for his technical assistance during the realization of this work. Figures 1 and 3 were generated using the Generic Mapping Tools (Wessel et al. 2013). The work by J.R. was supported by a contract Ramón y Cajal at the Universidad Complutense de Madrid (UCM). This work has received funding from the European Union’s Horizon 2020 Programme (H2020-Compet-08-2014) under Grant Agreement UPWARDS-633127, and from the Spanish Ministry of Economy and Competitiveness Projects CGL2011-23857 (MTDRES) and CGL2014-59363-P (AMARTE).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsige, M., Ruiz, J., del Río, I.A. et al. Modeling of Landslides in Valles Marineris, Mars, and Implications for Initiation Mechanism. Earth Moon Planets 118, 15–26 (2016). https://doi.org/10.1007/s11038-016-9488-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11038-016-9488-z