Earth, Moon, and Planets

, Volume 111, Issue 3–4, pp 127–137 | Cite as

The Size and Shape of the Oblong Dwarf Planet Haumea

  • Alexandra C. Lockwood
  • Michael E. Brown
  • John Stansberry
Article

Abstract

We use thermal radiometry and visible photometry to constrain the size, shape, and albedo of the large Kuiper belt object Haumea. The correlation between the visible and thermal photometry demonstrates that Haumea’s high amplitude and quickly varying optical light curve is indeed due to Haumea’s extreme shape, rather than large scale albedo variations. However, the well-sampled high precision visible data we present does require longitudinal surface heterogeneity to account for the shape of lightcurve. The thermal emission from Haumea is consistent with the expected Jacobi ellipsoid shape of a rapidly rotating body in hydrostatic equilibrium. The best Jacobi ellipsoid fit to the visible photometry implies a triaxial ellipsoid with axes of length 1,920 × 1,540 × 990 km and density \(2.6\) g cm\(^{-3}\), as found by Lellouch et al. (A&A, 518:L147, 2010. doi:10.1051/0004-6361/201014648). While the thermal and visible data cannot uniquely constrain the full non-spherical shape of Haumea, the match between the predicted and measured thermal flux for a dense Jacobi ellipsoid suggests that Haumea is indeed one of the densest objects in the Kuiper belt.

Keywords

Haumea Kuiper belt object characterization Hubble space telescope Spitzer space telescope 

References

  1. K.M. Barkume, M.E. Brown, E.L. Schaller, 640, L87 (2006). doi:10.1086/503159
  2. M.E. Brown, K.M. Barkume, D. Ragozzine, E.L. Schaller, 446, 294 (2007). doi:10.1038/nature05619
  3. R.H. Brown, D.P. Cruikshank, D. Morrison, Nature 300, 423 (1982a). doi:10.1038/300423a0 ADSCrossRefGoogle Scholar
  4. R.H. Brown, D. Morrison, C.M. Telesco, W.E. Brunk, Icarus 52, 188 (1982b). doi:10.1016/0019-1035(82)90178-6 ADSCrossRefGoogle Scholar
  5. B.J. Buratti, 100, 19061 (1995). doi:10.1029/95JE00146
  6. C. Dumas, B. Carry, D. Hestroffer, F. Merlin, 528, A105+ (2011). doi:10.1051/0004-6361/201015011
  7. S. Fornasier, E. Lellouch, T. Müller, P. Santos-Sanz, P. Panuzzo, C. Kiss, T. Lim, M. Mommert, D. Bockelée-Morvan, E. Vilenius, J. Stansberry, G.P. Tozzi, S. Mottola, A. Delsanti, J. Crovisier, R. Duffard, F. Henry, P. Lacerda, A. Barucci, A. Gicquel 555, A15 (2013). doi:10.1051/0004-6361/201321329
  8. K.D. Gordon, G.H. Rieke, C.W. Engelbracht, J. Muzerolle, J.A. Stansberry, K.A. Misselt, J.E. Morrison, J. Cadien, E.T. Young, H. Dole, D.M. Kelly, A. Alonso-Herrero, E. Egami, K.Y.L. Su, C. Papovich, P.S. Smith, D.C. Hines, M.J. Rieke, M. Blaylock, P.G. Pérez-González, E. Le Floc’h, J.L. Hinz, W.B. Latter, T. Hesselroth, D.T. Frayer, A. Noriega-Crespo, F.J. Masci, D.L. Padgett, M.P. Smylie, N.M. Haegel, 117, 503 (2005). doi:10.1086/429309 Google Scholar
  9. B. Hapke, Theory of Reflectance and Emittance Spectroscopy. Topics in Remote Sensing (Cambridge University Press, Cambridge, UK, 1993)Google Scholar
  10. J. Hillier, P. Helfenstein, A. Verbiscer, J. Veverka, R.H. Brown, J. Goguen, T.V. Johnson, Science 250, 419 (1990). doi:10.1126/science.250.4979.419 ADSCrossRefGoogle Scholar
  11. K.A. Holsapple, Icarus 187, 500 (2007). doi:10.1016/j.icarus.2006.08.012 ADSCrossRefGoogle Scholar
  12. J.A. Holtzman, C.J. Burrows, S. Casertano, J.J. Hester, J.T. Trauger, A.M. Watson, G. Worthey 107, 1065 (1995). doi:10.1086/133664
  13. E. Karkoschka, Icarus 151, 51 (2001). doi:10.1006/icar.2001.6596 ADSCrossRefGoogle Scholar
  14. P. Lacerda, 137, 3404 (2009). doi:10.1088/0004-6256/137/2/3404
  15. P. Lacerda, D.C. Jewitt, 133, 1393 (2007). doi:10.1086/511772
  16. P. Lacerda, D. Jewitt, N. Peixinho 135, 1749 (2008). doi:10.1088/0004-6256/135/5/1749
  17. L.A. Lebofsky, M.V. Sykes, E.F. Tedesco, G.J. Veeder, D.L. Matson, R.H. Brown, J.C. Gradie, M.A. Feierberg, R.J. Rudy, Icarus 68, 239 (1986). doi:10.1016/0019-1035(86)90021-7 ADSCrossRefGoogle Scholar
  18. Z.M. Leinhardt, R.A. Marcus, S.T. Stewart, 714, 1789 (2010). doi:10.1088/0004-637X/714/2/1789
  19. E. Lellouch, C. Kiss, P. Santos-Sanz, T.G. Müller, S. Fornasier, O. Groussin, P. Lacerda, J.L. Ortiz, A. Thirouin, A. Delsanti, R. Duffard, A.W. Harris, F. Henry, T. Lim, R. Moreno, M. Mommert, M. Mueller, S. Protopapa, J. Stansberry, D. Trilling, E. Vilenius, A. Barucci, J. Crovisier, A. Doressoundiram, E. Dotto, P.J. Gutiérrez, O. Hainaut, P. Hartogh, D. Hestroffer, J. Horner, L. Jorda, M. Kidger, L. Lara, M. Rengel, B. Swinyard, N. Thomas, 518, L147+ (2010). doi:10.1051/0004-6361/201014648
  20. E. Lellouch, P. Santos-Sanz, P. Lacerda, M. Mommert, R. Duffard, J.L. Ortiz, T.G. Müller, S. Fornasier, J. Stansberry, C. Kiss, E. Vilenius, M. Mueller, N. Peixinho, R. Moreno, O. Groussin, A. Delsanti, A.W. Harris, 557, A60 (2013). doi:10.1051/0004-6361/201322047
  21. F. Merlin, A. Guilbert, C. Dumas, M.A. Barucci, C. de Bergh, P. Vernazza 466, 1185 (2007). doi:10.1051/0004-6361:20066866
  22. R.L. Millis, L.H. Wasserman, O.G. Franz, R.A. Nye, R.C. Oliver, T.J. Kreidl, S.E. Jones, W. Hubbard, L. Lebofsky, R. Goff, R. Marcialis, M. Sykes, J. Frecker, D. Hunten, B. Zellner, H. Reitsema, G. Schneider, E. Dunham, J. Klavetter, K. Meech, T. Oswalt, J. Rafert, E. Strother, J. Smith, H. Povenmire, B. Jones, D. Kornbluh, L. Reed, K. Izor, M.F. A’Hearn, R. Schnurr, W. Osborn, D. Parker, W.T. Douglas, J.D. Beish, A.R. Klemola, M. Rios, A. Sanchez, J. Piironen, M. Mooney, R.S. Ireland, D. Leibow, Icarus 72, 507 (1987). doi:10.1016/0019-1035(87)90048-0 ADSCrossRefGoogle Scholar
  23. M. Mommert, A.W. Harris, C. Kiss, A. Pál, P. Santos-Sanz, J. Stansberry, A. Delsanti, E. Vilenius, T.G. Müller, N. Peixinho, E. Lellouch, N. Szalai, F. Henry, R. Duffard, S. Fornasier, P. Hartogh, M. Mueller, J.L. Ortiz, S. Protopapa, M. Rengel, A. Thirouin 541, A93 (2012). doi:10.1051/0004-6361/201118562
  24. N. Pinilla-Alonso, R. Brunetto, J. Licandro, R. Gil-Hutton, T.L. Roush, G. Strazzulla 496, 547 (2009). doi:10.1051/0004-6361/200809733
  25. D.L. Rabinowitz, K. Barkume, M.E. Brown, H. Roe, M. Schwartz, S. Tourtellotte, C. Trujillo 639, 1238 (2006). doi:10.1086/499575 Google Scholar
  26. D. Ragozzine, M.E. Brown, 137, 4766 (2009). doi:10.1088/0004-6256/137/6/4766
  27. G.H. Rieke, E.T. Young, C.W. Engelbracht, D.M. Kelly, F.J. Low, E.E. Haller, J.W. Beeman, K.D. Gordon, J.A. Stansberry, K.A. Misselt, J. Cadien, J.E. Morrison, G. Rivlis, W.B. Latter, A. Noriega-Crespo, D.L. Padgett, K.R. Stapelfeldt, D.C. Hines, E. Egami, J. Muzerolle, A. Alonso-Herrero, M. Blaylock, H. Dole, J.L. Hinz, E. Le Floc’h, C. Papovich, P.G. Pérez-González, P.S. Smith, K.Y.L. Su, L. Bennett, D.T. Frayer, D. Henderson, N. Lu, F. Masci, M. Pesenson, L. Rebull, J. Rho, J. Keene, S. Stolovy, S. Wachter, W. Wheaton, M.W. Werner, P.L. Richards, 154, 25 (2004). doi:10.1086/422717 Google Scholar
  28. C. Spearman, Am. J. Psychol. 15, 72 (1904)CrossRefGoogle Scholar
  29. J. Stansberry, W. Grundy, M. Brown, D. Cruikshank, J. Spencer, D. Trilling, J. Margot, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli (University of Arizona Press, Tucson, 2008), pp. 161–179Google Scholar
  30. R.F. Stellingwerf, 224, 953 (1978). doi:10.1086/156444
  31. P.C. Thomas, J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, 437, 224 (2005). doi:10.1038/nature03938
  32. C.A. Trujillo, M.E. Brown, K.M. Barkume, E.L. Schaller, D.L. Rabinowitz, 655, 1172 (2007). doi:10.1086/509861

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexandra C. Lockwood
    • 1
  • Michael E. Brown
    • 1
  • John Stansberry
    • 2
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.JWST/NIRCam TeamSpace Telescope Science InstituteBaltimoreUSA

Personalised recommendations