Deflection of Hazardous Near-Earth Objects by High Concentrated Sunlight and Adequate Design of Optical Collector

Abstract

Some detailed astronomical and applied aspects deflection of hazardous near-Earth objects (NEO) by direct high concentrated sunlight, causing intensive local ablation of their surfaces, are considered. The major requirements to solar concentrating optics within a single collector (a large mirror) approach, along with the asteroid properties being most substantial in achieving the predetermined effect for the period less than a year (mid-thrust action), are discussed. Such a hastened strategy may become topical in the case of late detection of potential danger, and also, if required, in providing the possibility for some additional action. It is also more acceptable in the public perception and keeping the peace for mankind rather than a long-run expectation of the incorrigible deflection resulting shortly ahead of the predicted hazard. The conventional concave reflectors have been graved to be practically inapplicable within the high concentrating geometry. This is primarily because of the dramatic spread of their focal spots at needful inclinations of optical axis from the direction toward the Sun, as well as of problematic use of the secondary optics. An alternative design of a mirrored ring-array collector is presented (as a tested and approved point-focus version of innovative reflective lenses for sunlight concentration within this approach), and comparative analysis was made. The assessment argues in favor of such a type of high-aperture optics having more capabilities than conventional devices. Mainly, this is because of the underside position (as respects the entrance aperture) of its focal area that allows avoidance of target shadowing the reflecting surfaces and minimizes their coating by the ejected debris. By using the modern asteroids database, some key estimations have been obtained. The surface irradiance around 4–5 MW/m2 (average across the focal spot concentration level ~5 × 103) for the ring-array collector size ~0.5 of asteroid diameter might suffice to deflect a 0.5-km-diameter NEO during several months. For the larger diameter NEOs, to 1.3–2.2 km, the required collector sizes are about the asteroid diameters, and they are even greater for more massive objects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. P.A. Abell, D.J. Korsmeyer, R.R. Landis, T.D. Jones, D.R. Adamo, D.D. Morrison, L.G. Lemke, A.A. Gonzales, R. Gershman, T.H. Sweetser, L.L. Johnson, E. Lu, Meteorit. Planet. Sci. 44, 1825 (2009)

    ADS  Article  Google Scholar 

  2. Asteroid Lightcurve Data Base (LCDB) (2012), http://www.minorplanet.info/lightcurvedatabase.html

  3. J.C. Bortz, N.E. Shatz, E. Narkis, A. Lewandowski, in Proceedings of the SPIE Conference on Nonimaging Optics: Maximum Efficiency Light Transfer III, R. ed. by R. Winston, vol. 2538 (1995), p. 157

  4. W.F. Bottke, A. Morbidelli, R. Jedicke, J.-M. Petit, H.F. Levison, P. Michel, T.S. Metcalfe, Icarus 156, 399–433 (2002)

    ADS  Article  Google Scholar 

  5. E. Cardiff, B.R. Pomeroy, J. P. Matchett, in Proceedings of the Space Resources Roundtable VII: LEAG Conference on Lunar Exploration, League City, TX, ed. by G. Taylor, S. Mackwell, J. Garvin, LPI Contribution No. 1287 (2005), p. 27

  6. C.R. Chapman, Earth Moon Planet. 102, 417 (2008)

    ADS  Article  Google Scholar 

  7. M.P. Chuchman, A.K. Shuaibov, L.V. Mesarosh, Tech. Phys. 56, 117 (2011)

    Article  Google Scholar 

  8. M. Delbo, A. Dell’Oro, A.W. Harris, S. Mottola, M. Mueller, Icarus 190, 236 (2007)

    ADS  Article  Google Scholar 

  9. M. Elvis, J. McDowell, J.A. Hoffman, R.P. Binzel, Planet. Space Sci. 59, 1408 (2011)

    ADS  Article  Google Scholar 

  10. D. Fargion, Chin. J. Astron. Astrophys. 8, 399 (2008)

    Google Scholar 

  11. S.P. Gong, J.F. Li, Y.F. Gao, Res. Astron. Astrophys. 11, 205 (2011)

    ADS  Article  Google Scholar 

  12. R. Kahle, E. Kührt, G. Hahn, J. Knollenberg, Aerospace Sci. Technol. 10, 256 (2006a)

    Article  Google Scholar 

  13. R. Kahle, G. Hahn, E. Kührt, Icarus 182, 482 (2006b)

    ADS  Article  Google Scholar 

  14. H.U. Keller, W.A. Delamere, W.F. Huebner, H.J. Reitsema, H.U. Schmidt, F.L. Whipple, K. Wilhelm, W. Kurdt, R. Kramm, N. Thomas, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, D.W. Hughes, C. Jamar, D. Malaise, K. Shmidt, W.K.H. Shmidt, P. Seige, Astron. Astrophys. 187, 807 (1987)

    ADS  Google Scholar 

  15. F. Kitajima, M. Kotsugi, T. Ohkochi, H. Naraoka, Y. Ishibashi, M. Abe, A. Fujimura, R. Okazaki, T. Yada, T. Nakamura, T. Noguchi, K. Nagao, A. Tsuchiyama, T. Mukai, S.A. Sandford, T. Okada, K. Shirai, M. Ueno, M. Yoshikawa, J. Kawaguchi, in Proceedings of 42nd Lunar and Planetary Science Conference, March 711, 2011, Woodlands, Texas. LPI Contribution No. 1608 (2011), p. 1855

  16. I.V. Lomakin, M.B. Martynov, V.G. Pol’, A.V. Simonov, Solar System Res. 45, 577 (2011)

    ADS  Article  Google Scholar 

  17. E.T. Lu, S.G. Love, Nature 438, 177 (2005)

    ADS  Article  Google Scholar 

  18. C. Maddock, J.P. Sanchez Cuartielles, M. Vasile, G. Radice, in Proceedings of the AIP Conference on New Trends in Astrodynamics and Applications III, 1618 August 2006, vol. 886 (Princeton, New Jersey 2007), p. 303

  19. G.L. Matloff, L. Leng, T. Le, in 3rd Annual Meteoritical Society Meeting, July 2630, 2010, New York, New York. Meteorit. Planet. Sci. Suppl. id.5004 (2010)

  20. M. Mueller, D.E. Trilling, J.L. Hora, A.W. Harris, L.A.M. Benner, B. Bhattacharya, W.F. Bottke, S. Chesley, M. Delbó, J.P. Emery, G. Fazio, A.R. Hagen, J.L. Kistler, A. Mainzer, M. Mommert, A. Morbidelli, B. Penprase, H.A. Smith, T.B. Spahr, J.A. Stansberry, C.A. Thomas, in Abstract EPSC-DPS Joint Meeting, 27 October 2011, Nantes, France, (2011), p. 839

  21. A. Mainzer, T. Grav, J. Bauer, J. Masiero, R.S. McMillan, R.M. Cutri, R. Walker, E. Wright, P. Eisenhardt, D.J. Tholen, T. Spahr, R. Jedicke, L. Denneau, E. Debaun, D. Elsbury, T. Gautier, S. Gomillion, E. Hand, W. Mo, J. Watkins, A. Wilkins, G.L. Bryngelsom, A. Del Pino Molina, S. Desai, M. Gomes Camus, S.L. Hidalgo, I. Konstantopoulos, J.A. Larsen, C. Maleszewski, M.A. Malkan, J.-C. Mauduit, B.L. Mullan, E.W. Olszewski, J. Pforr, A. Saro, J.V. Scotti, L.H. Wasserman, Ap. J. 743, 156 (2011)

    ADS  Article  Google Scholar 

  22. C.R. McInnes, Planet. Space Sci. 52, 587 (2004)

    ADS  Article  Google Scholar 

  23. H.J. Melosh, I.V. Nemchinov, Nature 366, 21 (1993)

    ADS  Article  Google Scholar 

  24. Ph. Nicolai, V.T. Tikhonchuk, A. Kasperczuk, T. Pisarczyk, S. Borodziuk, K. Rohlena, J. Ullschmied, Astrophys. Space Sci. 307, 87 (2007)

    ADS  Article  Google Scholar 

  25. J.-Y. Prado, A. Perret, O. Boisard, Adv. Space Res. 48, 1911 (2011)

    ADS  Article  Google Scholar 

  26. J. P. Sanchez Cuartielles, C. Colombo, M. Vasile, G. Radice, in Proceedings of AIP Conference on New Trends in Astrodynamics and Applications III, 1618 August 2006, Princeton, New Jersey (USA), vol. 886 (2007), p. 317

  27. M. Sauerborn, A. Neumann, W. Seboldt, B. Diekmann, in Proceedings of 35th COSPAR Scientific Assembly, 1825 July 2004, Paris, France (2004), p. 2975

  28. H. Takeuchi, H. Miyamoto, S. Maruyama, in Proceedings of 41st Lunar and Planetary Science Conference on March 15, 2010, Woodlands, Texas. LPI Contribution No. 1533 (2010), p. 1578

  29. G.N. Tiwari, in Solar Energy. Fundamentals, design, modelling and applications, (CRC Press, Boca Raton, London, New York, Washington, DC, 2000) p. 254

  30. M. Vasile, Commun. Nonlinear Sci. Numer. Simul. 14, 4139 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  31. M. Vasile, C.A. Maddock, Celest. Mechanic. Dynam. Astron. 107, 265 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  32. V.P. Vasylyev, in Proceedings of SPIE International Conference on Highly Innovative Space Telescope Concepts, ed. by H.A. MacEwen, August 22–28, 2002, vol. 4849 (Kona, Hawaii, 2002), p. 372

  33. S.V. Vasylyev, V.P. Vasylyev, in Proceedings of 40th ASES National Solar Conference (SOLAR 2011), May 1720, 2011, Raleigh, North Carolina, (Curran Associates, Inc., 2012) p. 221

  34. E.L. Walton, J.G. Spray, Meteorit. Planet. Sci. 39(Supl), A157 (2003)

    ADS  Article  Google Scholar 

  35. S.D. Wolters, S.F. Green, MNRAS 400, 204 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The author thanks V. A. Sergeev for help in drawing the figures, and also the referees, Dr. H. J. Melosh and Dr. A. W. Harris, as well as Dr. Murthy Gudipati, Editor in Chief, and Dr. M. A’Hearn, Associate Editor, for their helpful hints and useful comments and suggestions that has greatly improved the text.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. P. Vasylyev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasylyev, V.P. Deflection of Hazardous Near-Earth Objects by High Concentrated Sunlight and Adequate Design of Optical Collector. Earth Moon Planets 110, 67–79 (2013). https://doi.org/10.1007/s11038-012-9410-2

Download citation

Keywords

  • Hazardous near-Earth objects
  • Deflection by high concentrated sunlight
  • Asteroid properties
  • Mid-thrust action
  • Ring-array concentrating collector