Skip to main content

Distribution of Impact Locations and Velocities of Earth Meteorites on the Moon


Following the analytical work of Armstrong et al. (Icarus 160:183–196, 2002), we detail an expanded N-body calculation of the direct transfer of terrestrial material to the Moon during a giant impact. By simulating 1.4 million particles over a range of launch velocities and ejecta angles, we have derived a map of the impact velocities, impact angles, and probable impact sites on the moon over the last 4 billion years. The maps indicate that the impacts with the highest vertical impact speeds are concentrated on the leading edge, with lower velocity/higher-angle impacts more numerous on the Moon’s trailing edge. While this enhanced simulation indicates the estimated globally averaged direct transfer fraction reported in Armstrong et al. (Icarus 160:183–196, 2002) is overestimated by a factor of 3–6, local concentrations can reach or exceed the previously published estimate. The most favorable location for large quantities of low velocity terrestrial material is 50 W, 85 S, with 8.4 times more impacts per square kilometer than the lunar surface average. This translates to 300–500 kg km−2, compared to 200 kg km−2 from the previous estimate. The maps also indicate a significant amount of material impacting elsewhere in the polar regions, especially near the South Pole-Aiken basin, a likely target for sample return in the near future. The magnitudes of the impact speeds cluster near 3 km/s, but there is a bimodal distribution in impact angles, leading to 43% of impacts with very low (<1 km/s) vertical impact speeds. This, combined with the enhanced surface density of meteorites in specific regions, increases the likelihood of weakly shocked terrestrial material being identified and recovered on the Moon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • J.C. Armstrong, L.E. Wells, G. Gonzalez, Rummaging through Earth’s Attic for Remains of Ancient Life. Icarus 160, 183–196 (2002). doi:10.1006/icar.2002.6957, arXiv:astro-ph/0207316

  • S.A. Bowden, R.W. Court, D. Milner, E. Baldwin, P. Lindgren, I.A. Crawford, J. Parnell, M.J. Burchell, The thermal alteration by pyrolysis of the organic component of small projectiles of mudrock during capture at hypervelocity. J. Anal. Appl. Pyrolysis 82, 312–314 (2008)

    Article  Google Scholar 

  • J.E. Chambers, A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304, 793–799 (1999). doi:10.1046/j.1365-8711.1999.02379.x

    ADS  Article  Google Scholar 

  • J.E. Chambers, M.A. Murison, Pseudo-high-order symplectic integrators. AJ 119, 425–433 (2000). doi:10.1086/301161, arXiv:astro-ph/9910263

    Google Scholar 

  • R.N. Clark, Detection of Adsorbed Water and Hydroxyl on the Moon. Science 326, 562 (2009) doi:10.1126/science.1178105

    ADS  Article  Google Scholar 

  • I.A. Crawford, E.C. Baldwin, E.A. Taylor, J.A. Bailey, K. Tsembelis, On the survivability and detectability of terrestrial meteorites on the moon. Astrobiology 8, 242–252 (2008). doi:10.1089/ast.2007.0215

    ADS  Article  Google Scholar 

  • J.L. Gutiérrez, Terrene meteorites on the moon: a source of information about the origin of life in the earth? in First Steps in the Origin of Life in the Universe, ed. by J. Chela-Flores, T. Owen, F. Raulin (2001), p. 161

  • J.L. Gutiérrez, Terrene meteorites in the moon: its relevance for the study of the origin of life in the Earth. in Exo-Astrobiology, ESA Special Publication, vol 518, ed. by H. Lacoste (2002), pp. 187–191

  • A. Jerling, M.J. Burchell, D. Tepfer, Survival of seeds in hypervelocity impacts. Int. J. Astrobiol 7, 217–222 (2008). doi:10.1017/S1473550408004278

    Article  Google Scholar 

  • J.R. Johnson, K.E. Herkenhoff, J.F. Bell, W.H. Farrand, J. Ashley, C. Weitz, S.W. Squyres, Pancam visible/near-infrared spectra of large Fe-Ni meteorites at meridiani planum, Mars. in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 41, (2010), p. 1974

  • G. Levoci, M.J. Burchell, D. Tepfer, Survival of Seeds in Impacts at 1 km s-1 and Above. in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Inst. Technical Report, vol. 40, (2009), pp 1239

  • J.I. Nuñez, J.D. Farmer, R.G. Sellar, S. Douglas, K.S. Manatt, M.D. Fries, A.L. Lane, A. Wang, D.L. Blaney, The Multispectral Microscopic Imager (MMI) and the Mars Microbeam Raman Spectrometer (MMRS): An Integrated Payload for the In-Situ Exploration of Past and Present Habitable Environments on Mars. LPI Contributions 1538, 5458 (2010)

    ADS  Google Scholar 

  • J.I. Nunez, J.D. Farmer, R.G. Sellar, C. Allen, Exploring the Moon at the Microscale: Analysis of Apollo Samples with the Multispectral Microscopic Imager (MMI). AGU Fall Meeting Abstracts, pp. C1280+ (2009)

  • C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tompkins, P. Varanasi, Character and spatial distribution of OH/H 2 O on the Surface of the Moon Seen by M 3 on Chandrayaan-1. Science 326, 568 (2009). doi:10.1126/science.1178658

    ADS  Article  Google Scholar 

  • C. Schröder, D.S. Rodionov, T.J. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, W.H. Farrand, J.R. Johnson, S.W. Ruff, J.W. Ashley, D.W. Mittlefehldt, K.E. Herkenhoff, I. Fleischer, A.F.C. Haldemann, G. Klingelhöfer, D.W. Ming, R.V. Morris, P.A. de Souza, S.W. Squyres, C. Weitz, A.S. Yen, J. Zipfel, T. Economou (2008) Meteorites on mars observed with the mars exploration Rovers. J. Geophys. Res. (Planets) 113, 6 doi:10.1029/2007JE002990

    Google Scholar 

  • P.D. Spudis, D.B.J. Bussey, S.M. Baloga, B.J. Butler, D. Carl, L.M. Carter, M. Chakraborty, R.C. Elphic, J.J. Gillis-Davis, J.N. Goswami, E. Heggy, M. Hillyard, R. Jensen, R.L. Kirk, D. LaVallee, P. McKerracher, C.D. Neish, S. Nozette, S. Nylund, M. Palsetia, W. Patterson, M.S. Robinson, R.K. Raney, R.C. Schulze, H. Sequeira, J. Skura, T.W. Thompson, B.J. Thomson, E.A. Ustinov, H.L. Winters, Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission. Geophys. Res. Lett. 37, 6204 (2010). doi:10.1029/2009GL042259

    Article  Google Scholar 

  • R. Sridharan, S.M. Ahmed, T. Pratim Das, P. Sreelatha, P. Pradeepkumar, N. Naik, G. Supriya, Direct evidence for water (H 2 O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I. Planet. Space Sci. 58, 947–950 (2010). doi:10.1016/j.pss.2010.02.013

    ADS  Article  Google Scholar 

  • J.M. Sunshine, T.L. Farnham, L.M. Feaga, O. Groussin, F. Merlin, R.E. Milliken, M.F. A’Hearn, Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft. Science 326, 565 (2009). doi:10.1126/science.1179788

    ADS  Article  Google Scholar 

  • L.F.A. Teodoro, V.R. Eke, R.C. Elphic, Spatial distribution of lunar polar hydrogen deposits after KAGUYA (SELENE). Geophys. Res. Lett. 37, 12,201 (2010). doi:10.1029/2010GL042889

    Article  Google Scholar 

  • L.E. Wells, J.C. Armstrong, G. Gonzalez, Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment. Icarus 162, 38–46 (2003). doi:10.1016/S0019-1035(02)00077-5

    ADS  Article  Google Scholar 

  • V.N. Zharkov, On the History of the Lunar Orbit. Solar Syst. Res. 34, 1 (2000)

    ADS  Google Scholar 

Download references


We would like to thank the Ott Planetarium, and their NASA-funded computing cluster, for providing the computational resources for this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to John C. Armstrong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Armstrong, J.C. Distribution of Impact Locations and Velocities of Earth Meteorites on the Moon. Earth Moon Planets 107, 43–54 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Lunar impacts
  • Meteorites
  • Meteorite transfer
  • Orbital dynamics