Skip to main content

A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars


Using the shape model of Mars GTM090AA in terms of spherical harmonics complete to degree and order 90 and gravitational field model of Mars GGM2BC80 in terms of spherical harmonics complete to degree and order 80, both from Mars Global Surveyor (MGS) mission, the geometry (shape) and gravity potential value of reference equipotential surface of Mars (Areoid) are computed based on a constrained optimization problem. In this paper, the Areoid is defined as a reference equipotential surface, which best fits to the shape of Mars in least squares sense. The estimated gravity potential value of the Areoid from this study, i.e. W 0 = (12,654,875 ± 69) (m2/s2), is used as one of the four fundamental gravity parameters of Mars namely, {W 0, GM, ω, J 20}, i.e. {Areoid’s gravity potential, gravitational constant of Mars, angular velocity of Mars, second zonal spherical harmonic of gravitational field expansion of Mars}, to compute a bi-axial reference ellipsoid of Somigliana-Pizzetti type as the hydrostatic approximate figure of Mars. The estimated values of semi-major and semi-minor axis of the computed reference ellipsoid of Mars are (3,395,428 ± 19) (m), and (3,377,678 ± 19) (m), respectively. Finally the computed Areoid is presented with respect to the computed reference ellipsoid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  • A.A. Ardalan, E.W. Grafarend, Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level. J. Geod. 75, 424–437 (2001). doi:10.1007/PL00004005

    Google Scholar 

  • M.E. Davies, V.K. Abalakin, A. Brahic, M. Bursa, B.H. Chovitz, J.H. Lieske, P.K. Seidelmann, A.T. Sinclair, Y.S. Tjuflin, Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1991. Celestial Mech. 53, 377–397 (1992). doi:10.1007/BF00051818

    Google Scholar 

  • T. Duxbury, R. Kirk, B. Archinal, G. Neumann, Mars Geodesy/Cartography working group recommendations on Mars cartographic constants and coordinate systems, in Proceedings of the Symposium on Geopotential Theory, Processing and Applications (2000, Ottawa, Ontario) (2002), p. 4

  • W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars pathfinder. Science 278, 1749–1751 (1997). doi:10.1126/science.278.5344.1749

    Google Scholar 

  • C.F. Gauss, Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona (Vandenhoek und Ruprecht, Göttingen, 1828)

    Google Scholar 

  • E.W. Grafarend, A.A. Ardalan, World Geodetic datum 2000. J. Geod. 73, 611–623 (1999)

    Article  MATH  ADS  Google Scholar 

  • W.A. Heiskanen, H. Mortiz, in Physical Geodesy, ed. by W.H. Freeman (Institute of Physical Geodesy, Technical University of Graz, Austria, 1967)

  • A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)

    Article  ADS  Google Scholar 

  • F.G. Lemoine, D.E. Smith, D. Rowlands, M. Zuber, G.A. Neumann, D.S. Chinn, D. Pavlis, An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106, 23359–23376 (2001)

    Article  ADS  Google Scholar 

  • J.B. Listing, Über unsere jetzige Kenntnis der Gestalt und Größe der Erde (Dietrichsche Verlagsbuchhandlung, Göttingen, 1873)

    Google Scholar 

  • J.C. Marty, G. Balmino, J. Duron, P. Rosenblatt, S.L. Maistre, A. Rivoldini, V. Dehant, T.V. Hoolst, Martian gravity field model and its time variations from MGS and Odyssey data. Planet. Space Sci. 57, 350–363 (2009)

    Article  ADS  Google Scholar 

  • D.E. Smith, M. Zuber, S. Solomon, R. Phillips, J. Head, J. Garvin, W. Banerdt, D. Muhleman, G.H. Pettengill, G. Neumann, F.G. Lemoine, J. Abshire, O. Aharonson, C. Brown, S. Hauck, A. Ivanov, P. McGovern, H. Zwally, T. Duxbury, The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999a)

    Article  ADS  Google Scholar 

  • D.E. Smith, W.L. Sjogren, G.L. Tyler, G. Balmino, F.G. Lemoine, A.S. Konopliv, The gravity field of Mars: results from Mars global surveyor. Science 286, 94–97 (1999b)

    Article  ADS  Google Scholar 

  • P. Vanicek, E. Krakiwsky, Geodesy the Concept (Elsevier, Amsterdam, 1986)

    Google Scholar 

  • D.N. Yuan, W.L. Sjogren, A.S. Konopliv, A.B. Kucinskas, Gravity field of Mars: a 75th degree and order model. J. Geophys. Res. 106, 23377–23401 (2001)

    Article  ADS  Google Scholar 

Download references


The authors would like to kindly acknowledge the constructive comments and corrections of the anonymous reviewer which helped to significantly improve initial version of the paper. Besides, the authors would like to thank the University of Tehran for the financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. A. Ardalan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ardalan, A.A., Karimi, R. & Grafarend, E.W. A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars. Earth Moon Planet 106, 1–13 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Areoid
  • Areoid potential
  • Reference ellipsoid
  • Constrained optimization problem
  • Lagrange method