Skip to main content
Log in

Alzheimer's detection by Artificial Bee Colony and Convolutional Neural Network at Mobile Environment

  • Research
  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) presents a significant challenge in healthcare, particularly in its early detection. In this paper, we will introduce an innovative methodology that leverages the synergies of the Artificial Bee Colony (ABC) algorithm and Convolutional Neural Network (CNN) within a mobile environment to enhance the detection and diagnosis of Alzheimer's. The proposed system architecture integrates the ABC algorithm for feature optimization and CNN for image classification, specifically designed for mobile platforms. Our methodology emphasizes the efficient and accurate analysis of brain scans, specifically tailored to tackle the computational constraints inherent in mobile devices. These findings indicate that the integration of ABC and CNN within a mobile context could serve as a viable solution for early and accessible detection of Alzheimer's, potentially facilitating timely intervention and improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhou Q, Wang J, Yu X, Wang S, Zhang Y (2023) A survey of deep learning for alzheimer’s disease. Mach Learn Knowl Extraction 5(2):611–668. https://doi.org/10.3390/make5020035

    Article  Google Scholar 

  2. Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA (2023) Review of Alzheimer’s disease drugs and their relationship with neuron-glia interaction. IBRO Neuroscience Reports 14:64–76. https://doi.org/10.1016/j.ibneur.2022.11.005

    Article  Google Scholar 

  3. Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, Soto-Rojas LO (2023) Alzheimer’s disease: an updated overview of its genetics. Int J Mol Sci 24(4):3754. https://doi.org/10.3390/ijms24043754

    Article  Google Scholar 

  4. Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL (2023) Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 19(1):19–38. https://doi.org/10.1038/s41582-022-00749-z.10.3390/app13148298

    Article  Google Scholar 

  5. Dara OA, Lopez-Guede JM, Raheem HI, Rahebi J, Zulueta E, Fernandez-Gamiz U (2023) Alzheimer’s disease diagnosis using machine learning: a survey. Appl Sci 13(14):8298. https://doi.org/10.3390/app13148298

    Article  Google Scholar 

  6. Huang Y, Xu J, Zhang X, Liu Y, Yu E (2023) Research progress on vestibular dysfunction and visual–spatial cognition in patients with Alzheimer’s disease. Front Aging Neurosci 15:1153918. https://doi.org/10.3389/fnagi.2023.1153918

    Article  Google Scholar 

  7. Mahapatra G, Gao Z, Bateman JR III, Lockhart SN, Bergstrom J, DeWitt AR, Molina AJ (2023) Blood-based bioenergetic profiling reveals differences in mitochondrial function associated with cognitive performance and Alzheimer’s disease. Alzheimers Dement 19(4):1466–1478. https://doi.org/10.1002/alz.12731

    Article  Google Scholar 

  8. Chang HT, Chiu PY (2023) Development of a simple screening tool for determining cognitive status in Alzheimer’s disease. PLoS ONE 18(1):e0280178. https://doi.org/10.1371/journal.pone.0280178

    Article  Google Scholar 

  9. Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Mirzaei M (2024) Amyloid-beta and tau protein beyond Alzheimer’s disease. Neural Regen Res 19(6):1262–1276. https://doi.org/10.4103/1673-5374.386406

    Article  Google Scholar 

  10. Ichimata S, Martinez-Valbuena I, Lee S, Li J, Karakani AM, Kovacs GG (2023) Distinct molecular signatures of amyloid-beta and tau in alzheimer’s disease associated with down syndrome. Int J Mol Sci 24(14):11596. https://doi.org/10.3390/ijms241411596

    Article  Google Scholar 

  11. Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H (2023) Electrochemical immunosensors developed for amyloid-beta and tau proteins. Leading Biomarkers Alzheimer’s Disease Biosensors 13(7):742. https://doi.org/10.3390/bios13070742

    Article  Google Scholar 

  12. Rodriguez-Jimenez FJ, Ureña-Peralta J, Jendelova P, Erceg S (2023) Alzheimer’s disease and synapse Loss: What can we learn from induced pluripotent stem Cells? J Adv Res 54:105–118. https://doi.org/10.1016/j.jare.2023.01.006

    Article  Google Scholar 

  13. Duan H, Zhou D, Xu N, Yang T, Wu Q, Wang Z, Huang G (2023) Association of unhealthy lifestyle and genetic risk factors with mild cognitive impairment in Chinese older adults. JAMA Netw Open 6(7):e2324031–e2324031. https://doi.org/10.1001/jamanetworkopen.2023.24031

    Article  Google Scholar 

  14. Arora S, Santiago JA, Bernstein M, Potashkin JA (2023) Diet and lifestyle impact the development and progression of Alzheimer’s dementia. Frontiers in Nutrition 10. https://doi.org/10.3389/fnut.2023.1213223

  15. Adewale BA, Coker MM, Ogunniyi A, Kalaria RN, Akinyemi RO (2023) Biomarkers and risk assessment of alzheimer’s disease in low-and middle-income countries. J Alzheimer's Disease (Preprint): 1–11. https://doi.org/10.3233/JAD-221030

  16. Navarro-Gómez N, Valdes-Gonzalez M, Garrido-Suárez BB, Garrido G (2023) Pharmacological Inventions for Alzheimer Treatment in the United States of America: A Revision Patent from 2010–2020. The J Prev Alzheimer’s Disease 10(1):50–68. https://doi.org/10.14283/jpad.2023.2

    Article  Google Scholar 

  17. Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, van der Flier WM (2023) Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement 19(2):658–670. https://doi.org/10.1002/alz.12694

    Article  Google Scholar 

  18. Nowell J, Blunt E, Edison P (2023) Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry 28(1):217–229. https://doi.org/10.1038/s41380-022-01792-4

    Article  Google Scholar 

  19. Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR (2023) Pathophysiological aspects and therapeutic armamentarium of alzheimer’s disease: recent trends and future development. Cell Mol Neurobiol 43(8):3847–3884. https://doi.org/10.1007/s10571-023-01408-7

    Article  Google Scholar 

  20. Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V (2023) Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med 8(1):e10367. https://doi.org/10.1002/btm2.10367

    Article  Google Scholar 

  21. Yeates C, Deshpande P, Kango-Singh M, Singh A (2023) Signaling interactions among neurons impact cell fitness and death in Alzheimer’s disease. Neural Regen Res 18(4):784. https://doi.org/10.4103/1673-5374.354516

    Article  Google Scholar 

  22. Chandra A, Coile C, Mommaerts C (2023) What can economics say about Alzheimer’s Disease? J Econ Lit 61(2):428–470. https://doi.org/10.1257/jel.20211660

    Article  Google Scholar 

  23. Wang JT, Xu G, Ren RJ, Wang Y, Tang R, Huang Q, Wang G (2023) The impacts of health insurance and resource on the burden of Alzheimer’s disease and related dementias in the world population. Alzheimers Dement 19(3):967–979. https://doi.org/10.1002/alz.12730

    Article  Google Scholar 

  24. Self WK, Holtzman DM (2023) Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 29(9):2187–2199. https://doi.org/10.1038/s41591-023-02505-2

    Article  Google Scholar 

  25. Vogt ACS, Jennings GT, Mohsen MO, Vogel M, Bachmann MF (2023) Alzheimer’s disease: a brief history of immunotherapies targeting amyloid β. Int J Mol Sci 24(4):3895. https://doi.org/10.3390/ijms24043895

    Article  Google Scholar 

  26. Israilovich AE, Oybekovna IS (2023) Clinical and neurological approach to dementia of the alzheimer’s type. Central Asian J Med Nat Sci 4(1):7–11. https://doi.org/10.17605/cajmns.v4i1.1279

    Article  Google Scholar 

  27. Twarowski B, Herbet M (2023) Inflammatory processes in alzheimer’s disease—pathomechanism, diagnosis and treatment: a review. Int J Mol Sci 24(7):6518. https://doi.org/10.3390/ijms24076518

    Article  Google Scholar 

  28. Lin Q, Che C, Hu H, Zhao X, Li S (2023) A comprehensive study on early alzheimer’s disease detection through advanced machine learning techniques on MRI data. Acad J Sci Technol 8(1):281–285. https://doi.org/10.54097/ajst.v8i1.14334

    Article  Google Scholar 

  29. Yang C, Xu P (2023) The role of transforming growth factor β1/Smad pathway in Alzheimer’s disease inflammation pathology. Mol Biol Rep 50(1):777–788. https://doi.org/10.1007/s11033-022-07951-8

    Article  Google Scholar 

  30. Jagust WJ, Teunissen CE, DeCarli C (2023) The complex pathway between amyloid β and cognition: implications for therapy. Lancet Neurol 22(9):847–857. https://doi.org/10.1016/S1474-4422(23)00128-X

    Article  Google Scholar 

  31. Haller S, Jäger HR, Vernooij MW, Barkhof F (2023) Neuroimaging in dementia: more than typical Alzheimer disease. Radiology 308(3):e230173. https://doi.org/10.1148/radiol.230173

    Article  Google Scholar 

  32. Wang J, Liu Y, Rao S, Zhou X, Hu J (2023) A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks. Ad Hoc Netw 150:103284. https://doi.org/10.1016/j.adhoc.2023.103284

    Article  Google Scholar 

  33. Ibrahim S, Samah KAFA, Hamzah R, Ali NAM, Aminuddin R (2023) Substantial adaptive artificial bee colony algorithm implementation for glioblastoma detection. IAES Int J Artif Intell 12(1):443. https://doi.org/10.11591/ijai.v12.i1.pp443-450

    Article  Google Scholar 

  34. Özbay E (2023) An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev 56(4):3291–3318. https://doi.org/10.1007/s10462-022-10231-3

    Article  Google Scholar 

  35. Karaman A, Karaboga D, Pacal I, Akay B, Basturk A, Nalbantoglu U, Sahin O (2023) Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection. Appl Intell 53(12):15603–15620. https://doi.org/10.1007/s10489-022-04299-1

    Article  Google Scholar 

  36. Nazir S, Dickson DM, Akram MU (2023) Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Comput Biol Med 156:106668. https://doi.org/10.1016/j.compbiomed.2023.106668

  37. Gaur L, Bhatia U, Jhanjhi NZ, Muhammad G, Masud M (2023) Medical image-based detection of COVID-19 using deep convolution neural networks. Multimedia Syst 29(3):1729–1738. https://doi.org/10.1007/s00530-021-00794-6

    Article  Google Scholar 

  38. El-Shafai W, El-Hag N, Sedik A, Elbanby G, Abd El-Samie F, Soliman NF, Abdel Samea ME (2023) An efficient medical image deep fusion model based on convolutional neural networks. Comput Mater Contin 74(2):2905–2925. https://doi.org/10.32604/cmc.2023.031936

    Article  Google Scholar 

  39. Towfek SK, Khodadadi N (2023) Deep convolutional neural network and metaheuristic optimization for disease detection in plant leaves. J Intell Syst Internet Things 10(1):66–75. https://doi.org/10.54216/JISIoT.100105

    Article  Google Scholar 

  40. Zeng Q, Chen C, Chen C, Song H, Li M, Yan J, Lv X (2023) Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim Acta Part A Mol Biomol Spectrosc 286:122000. https://doi.org/10.1016/j.saa.2022.122000

    Article  Google Scholar 

  41. Elmoznino E, Bonner MF (2024) High-performing neural network models of visual cortex benefit from high latent dimensionality. PLoS Comput Biol 20(1):e1011792. https://doi.org/10.1371/journal.pcbi.1011792

    Article  Google Scholar 

  42. Nayebi A, Kong NC, Zhuang C, Gardner JL, Norcia AM, Yamins DL (2023) Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation. PLoS Comput Biol 19(10):e1011506. https://doi.org/10.1371/journal.pcbi.1011506

    Article  Google Scholar 

  43. Shamrat FJM, Akter S, Azam S, Karim A, Ghosh P, Tasnim Z, Ahmed K (2023) AlzheimerNet: An effective deep learning based proposition for alzheimer’s disease stages classification from functional brain changes in magnetic resonance images. IEEE Access 11:16376–16395. https://doi.org/10.1109/ACCESS.2023.3244952

    Article  Google Scholar 

  44. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498

    Article  Google Scholar 

  45. Zhang Y, Wang S, Sui Y, Yang M, Liu B, Cheng H, Gorriz JM (2018) Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J Alzheimers Dis 65(3):855–869. https://doi.org/10.3233/JAD-170069

    Article  Google Scholar 

  46. Gao S (2021) Gray level co-occurrence matrix and extreme learning machine for Alzheimer’s disease diagnosis. Int J Cogn Comput Eng 2:116–129. https://doi.org/10.1016/j.ijcce.2021.08.002

    Article  Google Scholar 

  47. Gao S (2021) Alzheimer’s disease diagnosis via 5-layer convolutional neural network and data augmentation. EAI Endorsed Trans e-Learning 7(23):e1–e1. https://doi.org/10.4108/eai.16-9-2021.170957

    Article  Google Scholar 

  48. Jamalullah RS, Gladence LM, Ahmed MA, Lydia EL, Ishak MK, Hadjouni M, Mostafa SM (2023) Leveraging brain mri for biomedical alzheimer’s disease diagnosis using enhanced manta ray foraging optimization based deep learning. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3294711

    Article  Google Scholar 

Download references

Funding

This work was supported by Major project of Natural Science Foundation of Education Department in Jiangsu Province (22KJA510008), Science and Technology Planning Project of Yangzhou City (YZ2022209), Jiangsu Province vocational education wisdom scene application "double teacher" master teacher studio (2021).

Author information

Authors and Affiliations

Authors

Contributions

Dan Shan wrote the main manuscript text, Fanfeng Shi and Tianzhi Le collected datas and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dan Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, D., Shi, F. & Le, T. Alzheimer's detection by Artificial Bee Colony and Convolutional Neural Network at Mobile Environment. Mobile Netw Appl (2024). https://doi.org/10.1007/s11036-024-02313-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11036-024-02313-z

Keywords

Navigation