Skip to main content

Vehicular Edge Computing and Networking: A Survey

Abstract

As one key enabler of Intelligent Transportation System (ITS), Vehicular Ad Hoc Network (VANET) has received remarkable interest from academia and industry. The emerging vehicular applications and the exponential growing data have naturally led to the increased needs of communication, computation and storage resources, and also to strict performance requirements on response time and network bandwidth. In order to deal with these challenges, Mobile Edge Computing (MEC) is regarded as a promising solution. MEC pushes powerful computational and storage capacities from the remote cloud to the edge of networks in close proximity of vehicular users, which enables low latency and reduced bandwidth consumption. Driven by the benefits of MEC, many efforts have been devoted to integrating vehicular networks into MEC, thereby forming a novel paradigm named as Vehicular Edge Computing (VEC). In this paper, we provide a comprehensive survey of state-of-art research on VEC. First of all, we provide an overview of VEC, including the introduction, architecture, key enablers, advantages, challenges as well as several attractive application scenarios. Then, we describe several typical research topics where VEC is applied. After that, we present a careful literature review on existing research work in VEC by classification. Finally, we identify open research issues and discuss future research directions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Lien S-Y, Kuo Y-C, Deng D-J, Tsai H-L, Vinel A, Benslimane A (2019) Latency-optimal mmwave radio access for v2x supporting next generation driving use cases. IEEE Access 7:6782–6795. https://doi.org/10.1109/ACCESS.2018.2888868

    Article  Google Scholar 

  2. 2.

    Li B, Fei Z, Chu Z, Zhang Y (2017) Secure transmission for heterogeneous cellular networks with wireless information and power transfer. IEEE Syst J 99:1–12

    Google Scholar 

  3. 3.

    Li B, Fei Z, Zhang Y (2018) Uav communications for 5g and beyond: Recent advances and future trends. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2887086

  4. 4.

    Mao S, Leng S, Hu J, Yang K (2019) Power minimization resource allocation for underlay miso-noma swipt systems. IEEE Access 7:17,247–17,255

    Article  Google Scholar 

  5. 5.

    Zhai D, Zhang R, Cai L, Li B, Jiang Y (2018) Energy-efficient user scheduling and power allocation for noma-based wireless networks with massive iot devices. IEEE Internet of Things Journal 5(3):1857–1868

    Article  Google Scholar 

  6. 6.

    Zhang Y, Yu R, Xie S, Yao W, Xiao Y, Guizani M (2011) Home m2m networks: architectures, standards, and qos improvement. IEEE Commun Mag 49(4):44–52

    Article  Google Scholar 

  7. 7.

    Peng H, Liang L, Shen X, Li GY (2018) Vehicular communications: a network layer perspective. IEEE Transactions on Vehicular Technology, 10.1109/TVT. 2018:2833427

    Google Scholar 

  8. 8.

    Lien S-Y, Hung S-C, Deng D-J, Lai C-L, Tsai H-L (2018) Low latency radio access in 3GPP local area data networks for v2x: Stochastic optimization and learning. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2874883

  9. 9.

    Chen C, Liu L, Qiu T, Yang K, Gong F, Song H (2018) ASGR: An Artificial spider-web-based geographic routing in heterogeneous vehicular networks. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2018.2828025

  10. 10.

    Kaiwartya O, Abdullah AH, Cao Y, Altameem A, Prasad M, Lin C-T, Liu X (2016) Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 4:5356–5373

    Article  Google Scholar 

  11. 11.

    Jinna H, Chen C, Qiu T, Atiquzzaman M, Ren Z (2018) CVCG: Cooperative V2v-aided transmission scheme based on coalitional game for popular content distribution in vehicular ad-hoc networks. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2018.2883312

  12. 12.

    Zhou Z, Yu H, Xu C, Zhang Y, Mumtaz S, Rodriguez J (2018) Dependable content distribution in d2d-based cooperative vehicular networks: a big data-integrated coalition game approach. IEEE Trans Intell Transp Syst 19(3):953–964

    Article  Google Scholar 

  13. 13.

    Zhou Z, Gao C, Xu C, Zhang Y, Mumtaz S, Rodriguez J (2018) Social big-data-based content dissemination in internet of vehicles. IEEE Transactions Industrial Informatics 14(2):768–777

    Article  Google Scholar 

  14. 14.

    Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Communications and Mobile Computing 13(18):1587–1611

    Article  Google Scholar 

  15. 15.

    Rahimi MR, Ren J, Liu CH, Vasilakos AV, Venkatasubramanian N (2014) Mobile cloud computing: a survey, state of art and future directions. Mobile Networks and Applications 19(2):133–143

    Article  Google Scholar 

  16. 16.

    Alizadeh M, Abolfazli S, Zamani M, Baharun S, Sakurai K (2016) Authentication in mobile cloud computing: a survey. J Netw Comput Appl 61:59–80

    Article  Google Scholar 

  17. 17.

    Lin C-C, Deng D-J, Yao C-C (2018) Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units. IEEE Internet of Things Journal 5(5):3692–3700

    Article  Google Scholar 

  18. 18.

    Lin Y-W, Shen J-M, Weng H-C (2013) Cloud-supported seamless internet access in intelligent transportation systems. Wireless Personal Communications 72(4):2081–2106

    Article  Google Scholar 

  19. 19.

    Bitam S, Mellouk A, Zeadally S (2015) VANET-Cloud: a generic cloud computing model for vehicular ad hoc networks. IEEE Wirel Commun 22(1):96–102

    Article  Google Scholar 

  20. 20.

    Mershad K, Artail H (2013) Finding a STAR in a vehicular cloud. IEEE Intelligent Transportation Systems Magazine 5(2):55–68

    Article  Google Scholar 

  21. 21.

    Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W (2017) A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access 5:6757–6779

    Article  Google Scholar 

  22. 22.

    Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282

    Google Scholar 

  23. 23.

    Dai Y, Xu D, Maharjan S, Zhang Y (2018) Joint computation offloading and user association in multi-task mobile edge computing. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2876804

  24. 24.

    Du J, Zhao L, Chu X, Yu FR, Feng J, Chih-Lin I (2019) Enabling low-latency applications in lte-a based mixed fog/cloud computing systems. IEEE Trans Veh Technol 68(2):1757–1771

    Article  Google Scholar 

  25. 25.

    Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: a survey. IEEE Internet of Things Journal 5(1):450–465

    Article  Google Scholar 

  26. 26.

    Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the communication perspective. IEEE Communications Surveys & Tutorials 19(4):2322–2358

    Article  Google Scholar 

  27. 27.

    Roman R, Lopez J, Mambo M (2018) Mobile edge computing, fog others: a survey and analysis of security threats and challenges. Futur Gener Comput Syst 78:680–698

    Article  Google Scholar 

  28. 28.

    Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On multi-access edge computing: a survey of the emerging 5g network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials 19(3):1657–1681

    Article  Google Scholar 

  29. 29.

    Qiao G, Leng S, Zhang K, He Y (2018) Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun Mag 56(8):48–54

    Article  Google Scholar 

  30. 30.

    Du J, Yu FR, Chu X, Feng J, Lu G (2018) Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. https://doi.org/10.1109/TVT.2018.2883156

  31. 31.

    Hou L, Lei L, Zheng K, Wang X (2018) A q-learning based proactive caching strategy for non-safety related services in vehicular networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2883762

  32. 32.

    Guo Y, Yang Q, Yu FR, Leung VC (2018) Cache-enabled adaptive video streaming over vehicular networks: A dynamic approach. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2817210

  33. 33.

    Cui J, Wei L, Zhang J, Xu Y, Zhong H (2018) An efficient message-authentication scheme based on edge computing for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2018.2827460

  34. 34.

    Huang X, Yu R, Kang J, Zhang Y (2017) Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access 5:25,408–25,420

    Article  Google Scholar 

  35. 35.

    Nunes BAA, Mendonca M, Nguyen X-N, Obraczka K, Turletti T (2014) A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys & Tutorials 16(3):1617–1634

    Article  Google Scholar 

  36. 36.

    Puthal D, Malik N, Mohanty SP, Kougianos E, Das G (2018) Everything you wanted to know about the blockchain: Its promise, components, processes, and problems. IEEE Consumer Electronics Magazine 7(4):6–14

    Article  Google Scholar 

  37. 37.

    Wang X, Li X, Leung VC (2015) Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access 3:1379–1391

    Article  Google Scholar 

  38. 38.

    Lv N, Chen C, Qiu T, Sangaiah AK (2018) Deep learning and superpixel feature extraction based on sparse autoencoder for change detection in SAR images. IEEE Transactions on Industrial Informatics

  39. 39.

    Dai Y, Xu D, Maharjan S, Qiao G, Zhang Y (2018) Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Wireless Communications Magazine, accepted

  40. 40.

    Yu X, Chu Y, Jiang F, Guo Y, Gong D (2018) Svms classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features. Knowl-Based Syst 141:80–91

    Article  Google Scholar 

  41. 41.

    Guo J, Song B, Chi Y, Jayasinghe L, Yuen C, Guan YL, Du X, Guizani M (2019) Deep neural network-aided gaussian message passing detection for ultra-reliable low-latency communications. Futur Gener Comput Syst 95:629–638

    Article  Google Scholar 

  42. 42.

    Luo L, Li Z, Wang J, Yu H (2019) Simplifying flow updates in software-defined networks using atoman. IEEE Access 7:39,083–39,097

    Article  Google Scholar 

  43. 43.

    Mijumbi R, Serrat J, Gorricho J-L, Bouten N, De Turck F, Boutaba R (2016) Network function virtualization: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials 18 (1):236–262

    Article  Google Scholar 

  44. 44.

    Al-Sultan S, Al-Doori MM, Al-Bayatti AH, Zedan H (2014) A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications 37:380–392

    Article  Google Scholar 

  45. 45.

    Sharef BT, Alsaqour RA, Ismail M (2014) Vehicular communication ad hoc routing protocols: a survey. Journal of Network and Computer Applications 40:363–396

    Article  Google Scholar 

  46. 46.

    Chen Z, He Q, Mao Z, Chung H-M, Maharjan S (2019) A study on the characteristics of douyin short videos and implications for edge caching. arXiv:1903.12399

  47. 47.

    Chen C, Qiu T, Hu J, Ren Z, Zhou Y, Sangaiah AK (2017) A congestion avoidance game for information exchange on intersections in heterogeneous vehicular networks. J Netw Comput Appli 85:116–126

    Article  Google Scholar 

  48. 48.

    Yuan Q, Zhou H, Li J, Liu Z, Yang F, Shen XS (2018) Toward efficient content delivery for automated driving services: an edge computing solution. IEEE Netw 32(1):80–86

    Article  Google Scholar 

  49. 49.

    Zhang K, Leng S, Peng X, Pan L, Maharjan S, Zhang Y (2018) Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2872013

  50. 50.

    Liu Y, Wang S, Huang J, Yang F (2018) A computation offloading algorithm based on game theory for vehicular edge networks. In: Proceeding of IEEE international conference on communications (ICC), pp 1–6

  51. 51.

    Du J, Yu R, Chu X, Feng J, Lu G (2018) Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2883156

  52. 52.

    Tareq MMK, Semiari O, Salehi MA, Saad W (2018) Ultra reliable, low latency vehicle-to-infrastructure wireless communications with edge computing. arXiv:1808.06015

  53. 53.

    Huang X, Yu R, Liu J, Shu L (2018) Parked vehicle edge computing: Exploiting opportunistic resources for distributed mobile applications. IEEE Access 6:66,649–66,663

    Article  Google Scholar 

  54. 54.

    Li C, Wang S, Huang X, Li X, Yu R, Zhao F (2018) Parked vehicular computing for energy-efficient internet of vehicles: A contract theoretic approach. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2869892

  55. 55.

    Sun Y, Song J, Zhou S, Guo X, Niu Z (2018) Task replication for vehicular edge computing:, A combinatorial multi-armed bandit based approach. arXiv:1807.05718

  56. 56.

    Lin F, Lü X, You I, Zhou X (2018) A novel utility based resource management scheme in vehicular social edge computing. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2878879

  57. 57.

    Zhu C, Pastor G, Xiao Y, Li Y, Ylae-Jaeaeski A (2018) Fog following me: Latency and quality balanced task allocation in vehicular fog computing. In: Proceedings of the 15th annual IEEE international conference on sensing, communication, and networking (SECON), pp 1–9

  58. 58.

    Zhang K, Mao Y, Leng S, He Y, Zhang Y (2017) Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading. IEEE Veh Technol Mag 12(2):36–44

    Article  Google Scholar 

  59. 59.

    Dai Y, Xu D, Maharjan S, Zhang Y (2018) Joint load balancing and offloading in vehicular edge computing and networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2876298

  60. 60.

    Zhang K, Mao Y, Leng S, Maharjan S, Vinel A, Zhang Y (2017) Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks. Mobile Networks and Applications, pp 1–12

  61. 61.

    Zhang K, Mao Y, Leng S, Maharjan S, Zhang Y (2017) Optimal delay constrained offloading for vehicular edge computing networks. In: Proceedings of IEEE international conference on communications (ICC), pp 1–6

  62. 62.

    Zhou Z, Liu P, Chang Z, Xu C, Zhang Y (2018) Energy-efficient workload offloading and power control in vehicular edge computing. In: Proceedings of IEEE wireless communications and networking conference workshops (WCNCW), pp 191–196

  63. 63.

    Zhang L, Zhao Z, Wu Q, Zhao H, Xu H, Wu X (2018) Energy-aware dynamic resource allocation in UAV assisted mobile edge computing over social internet of vehicles. IEEE Access 6:56,700–56,715. https://doi.org/10.1109/ACCESS.2018.2872753

    Article  Google Scholar 

  64. 64.

    Ku Y-J, Chiang P-H, Dey S (2018) Quality of service optimization for vehicular edge computing with solar-powered road side units. In: Proceedings of the 27th international conference on computer communication and networks (ICCCN), pp 1–10

  65. 65.

    He Y, Zhao N, Yin H (2018) Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans Veh Technol 67(1):44–55

    Article  Google Scholar 

  66. 66.

    Tan LT, Hu RQ (2018) Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Transactions on Vehicular Technology 67(11):10,190–10,203

    Article  Google Scholar 

  67. 67.

    Hou X, Li Y, Chen M, Wu D, Jin D, Chen S (2016) Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans Veh Technol 65(6):3860–3873

    Article  Google Scholar 

  68. 68.

    Zhu H, Cao Y, Wang W, Jiang T, Jin S (2018) Deep reinforcement learning for mobile edge caching: Review, new features, and open issues. IEEE Netw 32(6):50–57

    Article  Google Scholar 

  69. 69.

    Dai Y, Xu D, Maharjan S, Guanhua Q, Zhang Y Artificial intelligence empowered edge computing and caching for internet of vehicle. IEEE Wireless Communications Magazine, accepted

  70. 70.

    Zhang K, Zhu Y, Leng S, He Y, Maharjan S, Zhang Y (2019) Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2019.2903191

  71. 71.

    Lien S-Y, Hung S-C, Hsu H, Deng D-J (2018) Energy-optimal edge content cache and dissemination: Designs for practical network deployment. IEEE Commun Mag 56(5):88–93

    Article  Google Scholar 

  72. 72.

    Hu Z, Zheng Z, Wang T, Song L, Li X (2017) Roadside unit caching: Auction-based storage allocation for multiple content providers. IEEE Trans Wirel Commun 16(10):6321–6334

    Article  Google Scholar 

  73. 73.

    Ding R, Wang T, Song L, Han Z, Wu J (2015) Roadside-unit caching in vehicular ad hoc networks for efficient popular content delivery. In: Proceedings: IEEE wireless communications and networking conference (WCNC). IEEE, pp 1207–1212

  74. 74.

    Su Z, Hui Y, Xu Q, Yang T, Liu J, Jia Y (2018) An edge caching scheme to distribute content in vehicular networks. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2824345

  75. 75.

    Mahmood A, Casetti C, Chiasserini C-F, Giaccone P, Harri J (2016) Mobility-aware edge caching for connected cars. In: proceedings of 12th annual conference on wireless on-demand network systems and services (WONS), pp 1–8

  76. 76.

    Mahmood A, Casetti CE, Chiasserini C-F, Giaccone P, Haerri J (2018) The RICH prefetching in edge caches for in-order delivery to connected cars. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2879850

  77. 77.

    Zhang S, Zhang N, Fang X, Yang P, Shen XS (2017) Cost-effective vehicular network planning with cache-enabled green roadside units. In: Proceeding of IEEE International Conference on Communications (ICC). IEEE, pp 1–6

  78. 78.

    Wang S, Zhang Z, Yu R, Zhang Y (2017) Low-latency caching with auction game in vehicular edge computing. In: Proceedings of IEEE/CIC international conference on communications in China (ICCC), pp 1–6

  79. 79.

    Kumar N, Lee J-H (2014) Peer-to-peer cooperative caching for data dissemination in urban vehicular communications. IEEE Syst J 8(4):1136–1144

    Article  Google Scholar 

  80. 80.

    Fang S, Fan P (2017) A cooperative caching algorithm for cluster-based vehicular content networks with vehicular caches. In: Proceedings of IEEE globecom workshops (GC Wkshps), pp 1–6

  81. 81.

    Quan W, Liu Y, Jiang X, Guan J (2016) Intelligent popularity-aware content caching and retrieving in highway vehicular networks. EURASIP J Wirel Commun Netw 2016(1):200

    Article  Google Scholar 

  82. 82.

    Hu B, Fang L, Cheng X, Yang L (2018) In-vehicle caching (iv-cache) via dynamic distributed storage relay (D2SR) in vehicular networks. IEEE Transactions on Vehicular Technology, https://doi.org/10.1109/TVT.2018.2880969

  83. 83.

    Deng G, Wang L, Li F, Li R (2016) Distributed probabilistic caching strategy in vanets through named data networking. In: 2016 IEEE conference on computer communications workshops (INFOCOM WKSHPS), IEEE, pp 314–319

  84. 84.

    Yao L, Chen A, Deng J, Wang J, Wu G (2018) A cooperative caching scheme based on mobility prediction in vehicular content centric networks. IEEE Trans Veh Technol 67(6):5435–5444

    Article  Google Scholar 

  85. 85.

    Ma J, Wang J, Liu G, Fan P (2017) Low latency caching placement policy for cloud-based VANET with both vehicle caches and RSU caches. In: Proceedings of 2017 IEEE Globecom Workshops (GC Wkshps), pp 1–6

  86. 86.

    Zhang K, Leng S, He Y, Maharjan S, Zhang Y (2018) Cooperative content caching in 5g networks with mobile edge computing. IEEE Wirel Commun 25(3):80–87

    Article  Google Scholar 

  87. 87.

    Ndikumana A, Tran NH, Hong CS (2018) Deep learning based caching for self-driving car in multi-access edge computing. arXiv:1810.01548

  88. 88.

    Cheng HT, Shan H, Zhuang W (2011) Infotainment and road safety service support in vehicular networking: from a communication perspective. Mech Syst Signal Process 25(6):2020–2038

    Article  Google Scholar 

  89. 89.

    Zhang S, Zhang N, Fang X, Yang P, Shen XS (2017) Self-sustaining caching stations: Toward cost-effective 5g-enabled vehicular networks. IEEE Commun Mag 55(11):202–208

    Article  Google Scholar 

  90. 90.

    Idir L, Paris S, Naït-Abdesselam F (2015) Optimal caching of encoded data for content distribution in vehicular networks. In: Proceeding of IEEE international conference on communication workshop (ICCW). IEEE, pp 2483–2488

  91. 91.

    Chen C, Liu L, Du X, Wei X, Pei C (2012) Available connectivity analysis under free flow state in VANETs. EURASIP J Wirel Commun Netw 2012(1):270

    Article  Google Scholar 

  92. 92.

    Kumar N, Zeadally S, Rodrigues JJ (2015) QoS-Aware hierarchical web caching scheme for online video streaming applications in internet-based vehicular ad hoc networks. IEEE Trans Ind Electron 62 (12):7892–7900

    Article  Google Scholar 

  93. 93.

    Lai Y, Lin H, Yang F, Wang T (2019) Efficient data request answering in vehicular ad-hoc networks based on fog nodes and filters. Futur Gener Comput Syst 93:130–142

    Article  Google Scholar 

  94. 94.

    Hagenauer F, Sommer C, Higuchi T, Altintas O, Dressler F (2017) Vehicular micro clouds as virtual edge servers for efficient data collection. In: proceedings of the 2nd ACM international workshop on smart, autonomous, and connected vehicular systems and services, pp 31–35

  95. 95.

    Lai Y, Yang F, Su J, Zhou Q, Wang T, Zhang L, Xu Y (2018) Fog-based two-phase event monitoring and data gathering in vehicular sensor networks. Sensors 18(1):82

    Google Scholar 

  96. 96.

    Darwish TS, Bakar KA (2018) Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues. IEEE Access 6:15,679–15,701

    Article  Google Scholar 

  97. 97.

    Hou L, Lei L, Zheng K (2017) Design on publish/subscribe message dissemination for vehicular networks with mobile edge computing. In: Proceedings: IEEE Globecom Workshops (GC Wkshps), pp 1–6

  98. 98.

    Iqbal R, Butt TA, Shafique MO, Talib MWA, Umer T (2018) Context-aware data-driven intelligent framework for fog infrastructures in internet of vehicles. IEEE Access 6:58,182–58,194

    Article  Google Scholar 

  99. 99.

    Kadhim AJ, Seno SAH (2019) Energy-efficient multicast routing protocol based on sdn and fog computing for vehicular networks. Ad Hoc Netw 84:68–81

    Article  Google Scholar 

  100. 100.

    Jiao J, Hong X, Shi J (2018) Proactive content delivery for vehicles over cellular networks: the fundamental benefits of computing and caching. China Communications 15(7):88–97

    Article  Google Scholar 

  101. 101.

    Huang C-Y, Xu K (2016) Reliable realtime streaming in vehicular cloud-fog computing networks. In: Proceedings of IEEE/CIC international conference on communications in China (ICCC), pp 1–6

  102. 102.

    Luo G, Yuan Q, Zhou H, Cheng N, Liu Z, Yang F, Shen XS (2018) Cooperative vehicular content distribution in edge computing assisted 5g-VANET. China Communications 15(7):1–17

    Article  Google Scholar 

  103. 103.

    Hui Y, Su Z, Luan TH, Cai J (2018) Content in motion: An edge computing based relay scheme for content dissemination in urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems

  104. 104.

    Magaia N, Sheng Z, Pereira PR, Correia M (2018) REPSYS: A robust and distributed incentive scheme for collaborative caching and dissemination in content-centric cellular-based vehicular delay-tolerant networks. IEEE Wirel Commun 25(3):65–71

    Article  Google Scholar 

  105. 105.

    Gangadharan D, Sokolsky O, Lee I, Kim B, Lin C-W, Shiraishi S (2018) Bandwidth optimal data/service delivery for connected vehicles via edges. In: Proceedings of IEEE international conference on cloud computing (CLOUD)

  106. 106.

    Yaqoob S, Ullah A, Akbar M, Imran M, Guizani M (2018) Fog-assisted congestion avoidance scheme for internet of vehicles. In: Proceedings of the 14th international wireless communications & mobile computing conference (IWCMC), pp 618–622

  107. 107.

    Chen X, Wang L (2017) Exploring Fog Computing-Based Adaptive Vehicular Data Scheduling Policies Through a Compositional Formal Method-PEPA. IEEE Commun Lett 21(4):745–748

    Article  Google Scholar 

  108. 108.

    Zhou Z, Yu H, Xu C, Chang Z, Mumtaz S, Rodriguez J (2018) BEGIN: Big Data enabled energy-efficient vehicular edge computing. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2018.1700910

  109. 109.

    Zhang W, Zhang Z, Chao H-C (2017) Cooperative fog computing for dealing with big data in the internet of vehicles: Architecture and hierarchical resource management. IEEE Commun Mag 55(12):60–67

    Article  Google Scholar 

  110. 110.

    Liu L, Chen C, Qiu T, Zhang M, Li S, Zhou B (2018) A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs. Vehicular Communications. https://doi.org/10.1016/j.vehcom.2018.05.002

  111. 111.

    Shi L, Zhao L, Zheng G, Han Z, Ye Y (2018) Incentive design for cache-enabled d2d underlaid cellular networks using stackelberg game. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2878195

  112. 112.

    Zhang Y, Zhang H, Long K, Zheng Q, Xie X (2018) Software-defined and fog-computing-based next generation vehicular networks. IEEE Commun Mag 56(9):34–41. https://doi.org/10.1109/MCOM.2018.1701320

    Article  Google Scholar 

  113. 113.

    Deng D-J, Lien S-Y, Lin C-C, Hung S-C, Chen W-B (2017) Latency control in software-defined mobile-edge vehicular networking. IEEE Commun Mag 55(8):87–93

    Article  Google Scholar 

  114. 114.

    Nobre JC, de Souza AM, Rosário D, Both C, Villas LA, Cerqueira E, Braun T, Gerla M (2019) Vehicular software-defined networking and fog computing: Integration and design principles. Ad Hoc Netw 82:172–181. https://doi.org/10.1016/j.adhoc.2018.07.016

    Article  Google Scholar 

  115. 115.

    Liu J, Wan J, Zeng B, Wang Q, Song H, Qiu M (2017) A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Commun Mag 55(7):94–100

    Article  Google Scholar 

  116. 116.

    Huang X, Yu R, Kang J, He Y, Zhang Y (2017) Exploring mobile edge computing for 5g-enabled software defined vehicular networks. IEEE Wirel Commun 24(6):55–63

    Article  Google Scholar 

  117. 117.

    Li M, Si P, Zhang Y (2018) Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans Veh Technol 67(10):9073–9086

    Article  Google Scholar 

  118. 118.

    Soua A, Tohme S (2018) Multi-level SDN with vehicles as fog computing infrastructures: A new integrated architecture for 5g-VANETs. In: Proceedings of the 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp 1–8

  119. 119.

    Choo S, Kim J, Pack S (2018) Optimal task offloading and resource allocation in software-defined vehicular edge computing. In: Proceedings of International Conference on Information and Communication Technology Convergence (ICTC), pp 251–256

  120. 120.

    Kadhim AJ, Seno SAH (2018) Maximizing the utilization of fog computing in internet of vehicle using SDN. IEEE Communications Letters

  121. 121.

    Ma L, Liu X, Pei Q, Xiang Y (2018) Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Services Comput. https://doi.org/10.1109/TSC.2018.2825986

  122. 122.

    Ma L, Xiang Y, Pei Q, Xiang Y, Zhu H (2018) Robust reputation-based cooperative spectrum sensing via imperfect common control channel. IEEE Trans Veh Technol 67(5):3950–3963

    Article  Google Scholar 

  123. 123.

    Huang X, Yu R, Kang J, Zhang Y (2017) Distributed reputation management for secure and efficient vehicular edge computing and networks. IEEE Access 5:25,408–25,420

    Article  Google Scholar 

  124. 124.

    Huang B, Cheng X, Cheng W (2017) Meet-fog for accurate distribution of negative messages in VANET. In: Proceedings of the workshop on smart internet of things, pp 5

  125. 125.

    Soleymani SA, Abdullah AH, Zareei M, Anisi MH, Vargas-Rosales C, Khan MK, Goudarzi S (2017) A secure trust model based on fuzzy logic in vehicular ad hoc networks with fog computing. IEEE Access 5:15,619–15,629

    Article  Google Scholar 

  126. 126.

    Huang X, Yu R, Pan M, Shu L (2018) Secure roadside unit hotspot against eavesdropping based traffic analysis in edge computing based internet of vehicles. IEEE Access 6:62,371–62,383

    Article  Google Scholar 

  127. 127.

    Wu Y, Qian LP, Mao H, Yang X, Zhou H, Tan X, Tsang DH (2018) Secrecy-driven resource management for vehicular computation offloading networks. IEEE Netw 32(3):84–91

    Article  Google Scholar 

  128. 128.

    Yao Y, Chang X, Mišić J, Mišić VB (2018) Reliable and secure vehicular fog service provision. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2855718

  129. 129.

    Chen Y, Lu Z, Xiong H, Xu W (2018) Privacy-preserving data aggregation protocol for fog computing-assisted vehicle-to-infrastructure scenario. Security and Communication Networks, vol 2018

  130. 130.

    Xue K, Hong J, Ma Y, Wei DS, Hong P, Yu N (2018) Fog-aided verifiable privacy preserving access control for latency-sensitive data sharing in vehicular cloud computing. IEEE Netw 32(3):7–13

    Article  Google Scholar 

  131. 131.

    Wang L, Liu G, Sun L (2017) A secure and privacy-preserving navigation scheme using spatial crowdsourcing in fog-based VANETs. Sensors 17(4):668

    Article  Google Scholar 

  132. 132.

    Wei J, Wang X, Li N, Yang G, Mu Y (2018) A privacy-preserving fog computing framework for vehicular crowdsensing networks. IEEE Access 6:43,776–43,784

    Article  Google Scholar 

  133. 133.

    Basudan S, Lin X, Sankaranarayanan K (2017) A privacy-preserving vehicular crowdsensing-based road surface condition monitoring system using fog computing. IEEE Internet of Things Journal 4(3):772–782

    Article  Google Scholar 

  134. 134.

    Li M, Zhu L, Zhang Z, Du X, Guizani M (2018) PROS: A privacy-preserving route-sharing service via vehicular fog computing. IEEE Access 6:66,188–66,197

    Article  Google Scholar 

  135. 135.

    Kang J, Yu R, Huang X, Zhang Y (2018) Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans Intell Transp Syst 19(8):2627–2637

    Article  Google Scholar 

  136. 136.

    Huang D, Misra S, Verma M, Xue G (2011) PACP: An Efficient pseudonymous authentication-based conditional privacy protocol for VANETs. IEEE Trans Intell Transp Syst 12(3):736–746

    Article  Google Scholar 

  137. 137.

    Zhou L, Yu L, Du S, Zhu H, Chen C (2018) Achieving differentially private location privacy in edge-assistant connected vehicles. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2876419

  138. 138.

    Arif M, Wang G, Balas VE (2018) Secure VANETs: trusted communication scheme between vehicles and infrastructure based on fog computing. Studies in Informatics and Control 27(2):235–246

    Article  Google Scholar 

  139. 139.

    Kang J, Yu R, Huang X, Wu M, Maharjan S, Xie S, Zhang Y (2018) Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2875542

  140. 140.

    Dai Y, Xu D, Maharjan S, Chen Z, He Q, Zhang Y (2019) Blockchain and deep reinforcement learning empowered intelligent 5g beyond. IEEE Network Magazine accepted

  141. 141.

    Kang J, Xiong Z, Niyato D, Ye D, Kim DI, Zhao J (2018) Towards secure blockchain-enabled internet of vehicles:, Optimizing consensus management using reputation and contract theory. arXiv:1809.08387

  142. 142.

    Yang Z, Yang K, Lei L, Zheng K, Leung VC (2018) Blockchain-based decentralized trust management in vehicular networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2836144https://doi.org/10.1109/JIOT. https://doi.org/10.1109/JIOT.2018.28361442018.2836144

  143. 143.

    Li M, Zhu L, Lin X (2018) Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2018.2868076https://doi.org/10.1109/JIOT.2018. https://doi.org/10.1109/JIOT.2018.28680762868076

Download references

Acknowledgments

A section of acknowledgement needs to be added, which should include the following contents: This work was supported by the National Key Research and Development Program of China(2018YFE0126000), the National Natural Science Foundation of China (61571338, 61672131,61901367), the key research and development plan of Shaanxi province(2017ZDCXL-GY-05-01, 2020JQ-844), the key laboratory of industrial internet of things & networked control, Ministry of Education, the key laboratory of embedded system and service computing (Tongji University)(ESSCKF2019-05), Ministry of Education, and the Xi’an Key Laboratory of Mobile Edge Computing and Security (201805052-ZD3CG36).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chen Chen or Yan Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, C., Pei, Q. et al. Vehicular Edge Computing and Networking: A Survey. Mobile Netw Appl 26, 1145–1168 (2021). https://doi.org/10.1007/s11036-020-01624-1

Download citation

Keywords

  • Vehicular Ad Hoc network
  • Mobile edge computing
  • Vehicular edge computing
  • Computation offloading
  • Caching