Advertisement

Software Defined 5G and 6G Networks: a Survey

  • Qingyue Long
  • Yanliang Chen
  • Haijun ZhangEmail author
  • Xianfu Lei
Article
  • 116 Downloads

Abstract

The current mobile communications could not satisfy the explosive data requirement of users. This paper reviews the frontier technology of software definition networks (SDN) of 5G and 6G, including system architecture, resource management, mobility management, interference management, challenges, and open issues. First of all, the system architectures of 5G and 6G mobile networks are introduced based on SDN technologies. Then typical SDN-5G/6G application scenarios and key issues are discussed. We also focus on mobility management approaches in mobile networks. Besides, three types of mobility management mechanism in software defined 5G/6G are described and compared. We then summarize the current interference management techniques in wireless cellular networks. Next, we provide a brief survey of interference management method in SDN-5G/6G. Additionally, considering the challenges, we discuss mm-Wave spectrum, un-availability of popular channel model, massive MIMO, low latency and QoE, energy efficiency, scalability, mobility and routing, inter operability, standardization and security for software defined 5G/6G networks.

Keywords

SDN 5G 6G System architectures Resource management Mobility management Interference management 

Notes

References

  1. 1.
    Futuristic mobile technologies forese, IMT for 2020 and beyond. http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/default.aspx
  2. 2.
    IMT-2020, 5G, promotion association. http://www.imt-2020.org.cn/zh
  3. 3.
    Zhang H, Liu N, Chu X, Long K, Aghvami A, Leung V (2017) Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun Mag 55(8):138–145CrossRefGoogle Scholar
  4. 4.
    Zhang H, Dong Y, Cheng J, Hossain Md J, Leung VCM (2016) Fronthauling for 5G LTE-u ultra dense cloud small cell networks. IEEE Wireless Commun 23(6):48–53CrossRefGoogle Scholar
  5. 5.
    Software-defined networking: the new norm for networks (2012) ONF White PaperGoogle Scholar
  6. 6.
    Zhou H et al (2018) SDN-RDCD: a real-time and reliable method for detecting compromised SDN devices. IEEE/ACM Trans Netw 26(5):2048–2061CrossRefGoogle Scholar
  7. 7.
    Zhou H, Wu C, Cheng Q, Liu Q (2017) SDN-LIRU: a lossless and seamless method for SDN inter-domain route updates. IEEE/ACM Trans Netw 25(4):2473–2483CrossRefGoogle Scholar
  8. 8.
    Huang X, Li F, Wei T, Cao K, Cong P, Hu S Queueing theoretic approach for performance-aware modeling of sustainable SDN control planes. IEEE Trans Sustainable ComputingGoogle Scholar
  9. 9.
    Gudipati A, Perry D, Li L, Katti S SoftRAN: software defined radio access network. ACM SIGCOMM HotSDN Workshop, New York, pp 25–30Google Scholar
  10. 10.
    Ali-Ahmad H, Cicconetti C, De La Oliva A (2013) CROWD: an SDN approach for densenets. In: 2013 Second European workshop on software defined networks (EWSDN), pp 25-31Google Scholar
  11. 11.
    Du J, Jiang C, et al. (2018) Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks. IEEE J Select Areas Commun 36(10):2202–2217CrossRefGoogle Scholar
  12. 12.
    Zhang H, Liu H, Cheng J, Leung V (2017) Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell Networks. IEEE Trans CommunGoogle Scholar
  13. 13.
    Park S, Song H Cooperative base station caching and X2 link traffic offloading system for video streaming over SDN-enabled 5G networks. IEEE Trans Mobile ComputingGoogle Scholar
  14. 14.
    Yilmaz H, Tugcu T, Alagoz F, Bayhan S (2013) Radio environment map as enabler for practical cognitive radio networks. IEEE Commun Mag 51(12):162–169CrossRefGoogle Scholar
  15. 15.
    van de Beek J, Cai T, Grimoud S, Sayrac B, Mahonen P, Nasreddine J, Riihijarvi J (2012) How a layered rem architecture brings cognition to today’s mobile networks. IEEE Wireless Commun 19(4):17–24.  https://doi.org/10.1109/MWC.2012.6272419 CrossRefGoogle Scholar
  16. 16.
    Perez-Romero J, Zalonis A, Boukhatem L, Kliks A, Koutlia K, Dimitriou N, Kurda R (2015) On the use of radio environment maps for interference management in heterogeneous networks. IEEE Commun Mag 53(8):184–191CrossRefGoogle Scholar
  17. 17.
    IMT-2020 (5G) Promoting Group (2014) 5G Vision and Demand White PaperGoogle Scholar
  18. 18.
    IMT-2020 (5G) Promotion Squad. 5G vision and Demand White Paper. http://www.imt-2020.cn/zh/documents/listByQuery currentPage= 1&content
  19. 19.
    TU-R M. [IMT.Vision] (2013) IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond. ITU working document 5d/TEMP/224-eGoogle Scholar
  20. 20.
    ICT-317669 METIS Project (2013) Scenarios requirements and KPIs for 5G mobile and wireless systemGoogle Scholar
  21. 21.
    Nokia Siemens Networks (2011) 2020: beyond 4G radio evolution for the gigabit experience. White PaperGoogle Scholar
  22. 22.
    Ericsson. (2011) More than 50 billion connected devices. White PaperGoogle Scholar
  23. 23.
    Fettweis G, Alamouti S (2014) 5G: personal mobile internet beyond what cellular did to telephony. IEEE Commun Mag 52(2):140–145CrossRefGoogle Scholar
  24. 24.
    Osseiran A, Boccardi F, Braun V et al (2014) Scenario for 5G mobile and wireless communication: the vision of the METIS project. IEEE Commun Mag 52(5):26–35CrossRefGoogle Scholar
  25. 25.
    Zhang Y et al (2018) Software-defined and fog computing based next generation vehicular networks. IEEE Commun MagGoogle Scholar
  26. 26.
    Du J, Gelenbe E, Jiang C, Zhang H, Ren Y (2017) Contract design for traffic offloading and resource allocation in SDWN-based ultra-dense networks. IEEE J Select Areas Commun 35(11):2457–2467CrossRefGoogle Scholar
  27. 27.
    Ameigeiras P, Ramos-Munoz JJ, Schumacher L, Garzon JP, Ortiz JN, Lopez JM (2015) Link-level access cloud architecture design based on SDN for 5G networks. IEEE Netw 29(2):24–31CrossRefGoogle Scholar
  28. 28.
    Ameigeiras P, Ramos-Munoz JJ, Schumacher L, Garzon JP, Ortiz JN, Lopez JM (2018) Joint fair resource allocation of D2D communication underlaying downlink cellular system with imperfect CSI. IEEE AccessGoogle Scholar
  29. 29.
    Stanford University. Clean slate program [EB/OL]. [2015-07-21]. http://cleanslate.stanford.edu
  30. 30.
    Mckeown N (2009) Software defined networking, vol 17Google Scholar
  31. 31.
    Open Networking Fundation (2012) Software-defined networking: the new norm for networks [M/OL]//ONF White Paper. [2015-07-12]. https://www.Opennetworking.org/
  32. 32.
    Benardos CJ, DelaOliva A, Serrano P, Banchs A, Contreras L, Jin H, Zuniga JC (2014) An architecture for software defined wireless networking. IEEE Wireless Commun 21(3):52–61CrossRefGoogle Scholar
  33. 33.
    Zhang H, Qiu Y, Long K, Karagiannidis GK, Wang X, Nallanathan A (2018) Resource allocation in NOMA based fog radio access networks. IEEE Wireless CommunGoogle Scholar
  34. 34.
    Bolla R, Bruschi R, Lombardo C, Podda F (2014) Openflow in the small: a flexible and efficient network acceleration framework for multi-core systems. IEEE Trans Netw Serv Manag 11(3):390–404CrossRefGoogle Scholar
  35. 35.
    Chaudet C, Haddad Y (2013) Wireless software defined networks: challenges and opportunities. In: IEEE international conference on microwaves, communications, antennas and electronics systems (COMCAS), pp 1–5Google Scholar
  36. 36.
    Liang C, Yu FR (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tuts 17(1):358–380CrossRefGoogle Scholar
  37. 37.
    ONF (2012) Software-defined networking: the new norm for networksGoogle Scholar
  38. 38.
    Yang FY, Zhang JM, Xie WL, Wang MHN (2015) Analysis of 5G cellular network architectureGoogle Scholar
  39. 39.
    Zhang H, Wang B, Jiang C, Long K, Nallanathan A, Leung VCM, Poor HV (2018) Energy efficient dynamic resource optimization in NOMA system. IEEE Trans Wireless CommunGoogle Scholar
  40. 40.
    Zhang H, Du J, Cheng J, Long K, Leung VCM (2018) Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: a non-cooperative game theoretic approach. IEEE Trans Wirel Commun 17(3):1882–1892CrossRefGoogle Scholar
  41. 41.
    Lei K, Li Y, et al. (2018) NDN producer mobility management based on echo state network: a lightweight machine learning approach. In: Proceedings of the 24th international conference on parallel and distributed systems (ICPADS), SingaporeGoogle Scholar
  42. 42.
    Zhang X, Gu W et al (2019) Hybrid Communication path orchestration for 5G heterogeneous Ultra-Dense networks. IEEE NetwGoogle Scholar
  43. 43.
    Zhang H, Nie Y, Cheng J, Leung VCM, Nallanathan A (2017) Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans Wirel Commun 16(2):730–743CrossRefGoogle Scholar
  44. 44.
    Zhang H, Fang F, Cheng J, Long K, Wang W, Leung VCM (2018) Energy-efficient resource allocation in NOMA heterogeneous networks. IEEE Wireless CommunGoogle Scholar
  45. 45.
    Trvisonno R, Guerzoni R, Vaishnavi I, Soldani D (2014) Sdn-based 5g mobile networks: architecture, functions, procedures and backward compatibility. Transactions on Emerging Telecommunications TechnologiesGoogle Scholar
  46. 46.
    Guerzoni R, Trivisonno R, Vaishnavi I, Despotovic Z, Hecker A, Beker S, Soldani D (2014) A novel approach to virtual networks embedding for sdn management and orchestration. In: 2014 IEEE network operations and management symposium (NOMS), pp 1–7Google Scholar
  47. 47.
    Zuo L (2017) Bandwidth preemption for data transfer request with higher priority. In: 2017 IEEE 36th international performance computing and communications conference (IPCCC), San Diego, CA, pp 1–2Google Scholar
  48. 48.
    ITU-R M. [IMT.Vision] (2013) IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond. ITU working document 5d/TEMP/224-eGoogle Scholar
  49. 49.
    Reale R, da Neto W, Martins J (2012) Routing in ds-te networks with an opportunistic bandwidth allocation model. In: 2012 IEEE symposium on computers and communications (ISCC), pp 88–93Google Scholar
  50. 50.
    Xie W, Zhu J, Huang C, Luo M, Chou W (2014) Network virtualization with dynamic resource pooling and trading mechanism. In: 2014 IEEE global communication conference (GLOBECOM), pp 1829–1835Google Scholar
  51. 51.
    Mijumbi R, Gorricho J-L, Serrat J, Claeys M, De Turck F, Latre S (2014) Design and evaluation of learning algorithms for dynamic resource management in virtual networks. In: 2014 IEEE network operations and management symposium (NOMS), pp 1–9Google Scholar
  52. 52.
    Kareche S, Ductor S, Guessoum Z, Mezghiche M (2014) A new robust heuristic for assigning substrate network resources to virtual networks. In: 2014 International conference on advanced networking distributed systems and applications, Bejaia, pp 47–52Google Scholar
  53. 53.
    Trinh T, Esaki H, Aswakul C (2011) Quality of service using careful overbooking for optimal virtual network resource allocation. In: 8th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), pp 296–299Google Scholar
  54. 54.
    Mijumbi R, Serrat J, Rubio-Loyola J, Bouten N, De Turck F, Latre S (2014) Dynamic resource management in sdn-based virtualized networks. In: 2014 10th international conference on network and service management (CNSM), pp 412–417Google Scholar
  55. 55.
    Wang J, Wang Y, Dai X, Bensaou B (2014) Sdn-based multi-class qos guaranteed inter-data center traffic management. In: 2014 IEEE 3rd international conference on cloud networking (CloudNet), pp 401–406Google Scholar
  56. 56.
    Kliks A, Goratti L, Chen T (2016) Revisiting a cognitive tool for virtualized 5G networks. In: 2016 23rd international conference on telecommunications (ICT)Google Scholar
  57. 57.
    Liang C, Yu FR (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tuts 17(1):358–380.  https://doi.org/10.1109/COMST.2014.2352118 CrossRefGoogle Scholar
  58. 58.
    Suarez-Rodriguez C, Jayawickrama A, Bader F (2018) REM-Based handover algorithm for next-generation multi-tier cellular networks. In: IEEE Wireless Communication and Networking Conference (WCNC), pp 1–6Google Scholar
  59. 59.
    Kryszkiewicz P, Kliks A, Kulacz L (2018) Context-based spectrum sharing in 5G wireless networks based on Radio Environment Maps, Wireless Commun and Mobile ComputingGoogle Scholar
  60. 60.
    Mahapatra R (2019) Radio environment map based radio resource management in heterogeneous wireless network. In: Proceedings of the 2nd international conference on communication, computing and networking, pp 283–292Google Scholar
  61. 61.
    Liyanage M, Gurtov A, Ylianttila M (2015) Software defined mobile networks (SDMN): Beyond LTE Network Architecture. Wiley, New YorkGoogle Scholar
  62. 62.
    Costa-Requena J, Llorente Santos J, Ferrer Guasch V, Ahokas K, Premsankar G, Luukkainen S, Ahmad I, Liyanage M, Ylianttila M, Lopez Perez O, Uriarte Itzazelaia M, Montes de Oca E (2015) SDN and NFV integration in generalized mobile network architecture. 2015 European Conf. on Networks and Communications (EuCNC), pp 154–158Google Scholar
  63. 63.
    Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tuts PP(99):1–1Google Scholar
  64. 64.
    He H, Li X, Wang X, Feng Z, et al. (2017) An adaptive handover trigger strategy for 5G C/U plane split heterogeneous network. Proceedings of the 14th International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2017), Orlando, Florida, pp 22–25Google Scholar
  65. 65.
    Zhang H, Qiu Y, Chu X, Long K, Leung VCM (2018) “Fog radio access networks: Mobility management, interference mitigation and resource optimization, IEEE Wireless Commun.Google Scholar
  66. 66.
    Kukliski S, Li YH, Dinh KT (2014) Handover management in SDN-based mobile networks. Proceedings of 6th IEEE Int Workshop on Management of Emerging Networks and ServicesGoogle Scholar
  67. 67.
    3GPP (2011) Evolved general packet radio service (GPRS) tunnelling protocol for control plane (GTPv2-c), 3rd Generation Partnership Project (3GPP), TS 29.274Google Scholar
  68. 68.
    Zeng H, Liu X, Megeed S (2019) Digital signal processing for High-Speed Fiber-Wireless convergence. J Opt Commun Netw 11(1):A11–A19CrossRefGoogle Scholar
  69. 69.
    Hata M, Soylu M, Izumi S (2018) SDN Based end-to-end inter-domain routing mechanism for mobility management and its evaluation. Sensors 18(12):4228CrossRefGoogle Scholar
  70. 70.
    Wan R, Da B, Li R (2018) Identity based security for authentication and mobility in future ID oriented networks. 2018 Int. Conf. on IEEE Information Networking (ICOIN), pp 402–407Google Scholar
  71. 71.
    Contreras L, Cominardi L, Qian H, Bernardos C (2016) Software-defined mobility management: Architecture proposal and future directions. Mobile Netw Appl 21(2):226–236CrossRefGoogle Scholar
  72. 72.
    Varadharajan V, Karmakar K, Tupakula U (2019) A policy-based security architecture for software-defined networks. IEEE Trans Info Forens Secur 14(4):897–912CrossRefGoogle Scholar
  73. 73.
    Quer G, Aktas T, Librino F (2019) A Wireless Vehicle-based mobile network infrastructure designed for smarter cities. Ad Hoc Netw Ad Hoc Netw 85:160–169CrossRefGoogle Scholar
  74. 74.
    Hampel G, Steiner M, Bu T (2013) Applying software-defined networking to the telecom domain. Proceedings of 16th IEEE Global Internet Symposium in conjunction with IEEE Infocom, Turin, ItalyGoogle Scholar
  75. 75.
    Said SBH, Sama MR, Guillouard K, Suciu L, Simon G, Lagrange X, Bonnin J-M (2013) New control plane in 3GPP LTE/EPC architecture for on-demand connectivity Service. Proceedings of 2nd IEEE Int. Conf on Cloud Networking (CloudNet)Google Scholar
  76. 76.
    Pentikousis K, Wang Y, Hu WH (2013) Mobileflow: Toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53CrossRefGoogle Scholar
  77. 77.
    Jeon S, Guimaraes C, Aguiar RL (2014) SDN-based mobile networking for cellular operators. Proceedings of 9th ACM workshop on Mobility in the evolving internet architecture (MobiArch)Google Scholar
  78. 78.
    Wang Y, Bi J (2014) A Solution for IP mobility support in software defined networks. Proceedings of 23rd International Conference on Computer Communication and Networks (ICCCN)Google Scholar
  79. 79.
    Raza SM, Kim DS, Choo H (2014) Leveraging PMIPv6 with SDN. Proceedings of 8th International Conference on Ubiquitous Information Management and Communication (ICUIMC)Google Scholar
  80. 80.
    Kim S-M, Choi H-Y, Park P-W, Min S-G, Han Y-H (2014) OpenFlow-based proxy mobile IPv6 over Software Defined Network (SDN). Proceedings of IEEE Consumer communications and networking conference (CCNC)Google Scholar
  81. 81.
    Ali-Ahmad H, Cicconetti C, Oliva A, Draxler M, Gupta R, Mancuso V, Roullet L, Sciancalepore V (2013) CROWD: An Sdn approach for denseNets, 2013 2nd European Workshop on Software Defined Networks (EWSDN)Google Scholar
  82. 82.
    Sheng M, Sun H, Wang X, Zhang Y, Quek TS, Liu J, Li J (2015) On-demand scheduling: achieving QoS differentiation for D2D communications. IEEE Commun Mag 53(7):162–170CrossRefGoogle Scholar
  83. 83.
    Wang MM, Ji T (2010) Dynamic resource allocation for interference management in orthogonal frequency division multipleaccess cellular communications. IET Commun 4(6):675–682CrossRefGoogle Scholar
  84. 84.
    Zhang J, Chen RH, Andrews J, Ghosh A, Heath RW (2009) Networked MIMO with clustered linear precoding. IEEE Trans Wirel Commun 8(4):1910–1921CrossRefGoogle Scholar
  85. 85.
    Miridakis N, Vergados DD (2013) A survey on the successive interference cancellation performance for the single antenna and multiple antenna OFDM systems. IEEE Commun Surv Tuts 15(1):312–335CrossRefGoogle Scholar
  86. 86.
    Lee J, Kim Y, Lee H, Ng BL, Mazzarese D, Liu J, Xiao WM, Zhou YX (2012) Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Commun Mag 50(11):44–50CrossRefGoogle Scholar
  87. 87.
    Zhang R, Cui SG (2010) Interference management with MISO beamforming. IEEE Trans Signal Process 58(10):5450–5458MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Zhao GD, Yang CY, Li GY, Sun GL (2011) Fractional frequency donation for cognitive interference management among femtocells. IEEE Global Telecommun. Conf. IEEE Press, Houston, pp 1–6Google Scholar
  89. 89.
    Attar A, Krishnamurthy V, Gharehshiran ON (2011) Interference management using cognitive base-station for LTE. IEEE Commun Mag 49(8):152–159CrossRefGoogle Scholar
  90. 90.
    Bosisio R, Spagnolini U (2008) Interference coordination vs. interference randomization in multi cell 3GPP LTE systems. IEEE Wireless Communications and Networking Conference. IEEE Press, Las Vegas, pp 824–829Google Scholar
  91. 91.
    3GPP. Further advancements for E-UTRA physical layer aspects: TR-36.814 [R/OL]. [2016-05-24]. http://www.3gpp.org/ftp/Specs/html-info/36814.htm
  92. 92.
    3GPP. Requirements for support of radio resource management: TR-36.133 [R/OL]. [2016-05-24]. http://www.3gpp.org/ftp/Specs/htmlinfo/36133.htm
  93. 93.
    Zhang H, Liu N, Long K, Cheng J, Leung VCM, Hanzo L (2018) Energy efficient subchannel and power allocation for the software defined heterogeneous VLC and RF networks. IEEE J Select Areas CommunGoogle Scholar
  94. 94.
    Hamza AS, Khalifa SS, Hamza HS, Elsayed K (2013) A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Commun Surv Tuts 15(4):1642–1670CrossRefGoogle Scholar
  95. 95.
    Yang CG, Li J, Anpalagan A, Guizani M (2016) Joint power coordination for spectral-and-energy efficiency in denser small cell networks: a bargaining game-theoretic perspective. IEEE Trans Wirel Commun 15 (2):1364–1376CrossRefGoogle Scholar
  96. 96.
    Cadambe VR, Jafar SA (2008) Interference alignment and degrees of freedom of the K-user interference channel. IEEE Trans Inform Theory 54(8):3425–3441MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Katti S, Rahul H, Hu WJ, Katabi D, Medard M, Crowcroft J (2010) Xors in the air practical wireless network coding. IEEE/ACM Trans Netw 16(3):497–510CrossRefGoogle Scholar
  98. 98.
    Lee N, Lim JB, Chun J (2010) Degrees of freedom of the MIMO Y channel: Signal space alignment for network coding. IEEE Trans Inform Theory 56(7):3332–3342MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Ma X, Sheng M, Zhang Y (2012) Green communications with network cooperation: a concurrent transmission approach. IEEE Commun Lett 16(12):1952–1955CrossRefGoogle Scholar
  100. 100.
    Sawahashi M, Kishiyama Y, Morimoto A, Nishikawa D, Tanno M (2010) Coordinated multipoint transmission/reception techniques for LTE-advanced. IEEE Wirel Commun Mag 17(3):26–34CrossRefGoogle Scholar
  101. 101.
    Li JD, Liu L, Sheng M, Xu C (2016) Intelligent interference management in 5G wireless networks.  https://doi.org/10.11959/j.issn.10
  102. 102.
    Gebremariam AA, Gorattiy L, Riggioy R, Siracusay D, Rasheedy T, Granelli F (2015) A framework for interference control in software-defined mobile radio networks. IEEE 12th Consumer Communications and Networking Conference(CCNC), pp 892–897Google Scholar
  103. 103.
    Kim H, Feamster N (2013) Improving network management with software defined networking. IEEE Commun Mag, 114–119CrossRefGoogle Scholar
  104. 104.
    Yap KK, Sherwood R, Kobayashi M, Huang TY, Chan M, Handigol N, McKeown N, Parulkar G (2010) Blueprint for introducing innovation into wireless mobile networks. VISA 2010, New Delhi, India, pp 1–8Google Scholar
  105. 105.
    Wang B, et al. (2017) Green resource allocation in intelligent software defined NOMA networks. 2nd International Conference on Machine Learning and Intelligent Communications, MLICOM 2017, Weihai, ChinaGoogle Scholar
  106. 106.
    Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will 5G be?. IEEE J Sel Areas Commun 32(6):1065–1082CrossRefGoogle Scholar
  107. 107.
    Adhikari P (2008) Understanding millimeter wave wireless communication. white paper Loea CorporationGoogle Scholar
  108. 108.
    Zhang H, Huang S, Jiang C, Long K, Leung VCM, Poor HV (2017) Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE J Sel Areas Commun 35(9):1936–1947CrossRefGoogle Scholar
  109. 109.
    Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M, Gutierrez F (2013) Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access 1:335–345CrossRefGoogle Scholar
  110. 110.
    Rajagopal S, Abu-Surra S, Pi Z, Khan F (2011) Antenna array design for multi-gbps mmwave mobile broadband communication. Global Telecommun Conf (Globecom), pp 1–6Google Scholar
  111. 111.
    Rappaport TS, Gutierrez F, Ben-Dor E, Murdock JN, Qiao Y, Tamir JI (2013) Broadband millimeter wave propagation measurements and models using adaptive beam antennas for outdoor urban cellular communications. IEEE Trans Antennas Propagat 61(4):1850–1859CrossRefGoogle Scholar
  112. 112.
    GSMA Intelligence (2014) Understanding 5G: Perspectives on future technological advancements in mobile. white paperGoogle Scholar
  113. 113.
    Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tuts 16(1):414–454CrossRefGoogle Scholar
  114. 114.
    Hampel G, Steiner M, Bu T (2013) Applying software-defined networking to the telecom domain. Proceedings of IEEE INFOCOM’13, pp 133–138Google Scholar
  115. 115.
    Basta A, Kellerer W, Hoffmann M, Hoffmann K, Schmidt ED (2013) A virtual sdn-enabled lte epc architecture: A case study for S-/P-gateways functions. Proceedings of SDN3FNS’13Google Scholar
  116. 116.
    Pentikousis K, Wang Y, Hu WH (Jul. 2013) Mobileflow: Toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53Google Scholar
  117. 117.
    Yazc V, Kozat UC, Sunay MO (2014) A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun Mag 52(11):76–85CrossRefGoogle Scholar
  118. 118.
    Jin X, Li L, Vanbever L, Rexford J (2013) Softcell: Scalable and flexible cellular core network architecture. Proceedings of ACM CoNEXT’13, pp 163–174Google Scholar
  119. 119.
    Linthicum DS (2016) Software-defined networks meet cloud computing. IEEE Cloud Comput 3(3):8–10CrossRefGoogle Scholar
  120. 120.
    Liu J, Sheng M, Li J (2018) Limitation of SDMA in ultra-dense small cell networks. IEEE Wirel Commun Lett 7(4):506–509CrossRefGoogle Scholar
  121. 121.
    Khan S, Gani A, Abdul Wahab AW, Iqbal S, Abdelaziz A, Mahdi OA, Abdallaahmed AI, Shiraz M, Al-Mayouf YRB, Khan Z, Ko K, Khan MK, Chang V (2016) Towards an applicability of current network forensics for cloud networks: A sWOT analysis. IEEE Access 4:9800–9820CrossRefGoogle Scholar
  122. 122.
    Nguyen V, Brunstrom A, Grinnemo K, Taheri J (2017) SDN/NFV-Based mobile packet core network architectures: A survey. IEEE Commun Surv Tuts 19(3):1567–1602CrossRefGoogle Scholar
  123. 123.
    Chen T, Zhang H, Chen XF, Tirkkonen O (2014) Softmobile: Control evolution for future heterogeneous mobile networks. IEEE Wirel Commun Mag 21(6):70–78CrossRefGoogle Scholar
  124. 124.
    Sama M, Contreras L, Kaippallimalil J, Akiyoshi I, Qian H, Ni H (2015) Software-defined control of the virtualized mobile packet core. IEEE Commun Mag 53:2CrossRefGoogle Scholar
  125. 125.
    Arslan M, Sundaresan K, Rangarajan S (2015) Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun Mag 53(1):150–156CrossRefGoogle Scholar
  126. 126.
    kreutz D, Ramos FMV, Verissimo P, Rothenberg CE, Azodolmolky A, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103:1CrossRefGoogle Scholar
  127. 127.
    Zhang H, Yang N, Long K, Pan M, Karagiannidis GK, Leung VCM (2017) Secure communications in NOMA system: Subcarrier assignment and power allocation. IEEE J Select Areas CommunGoogle Scholar
  128. 128.
    Liu Q, Li P, Zhao W, Cai W, Yu S, Leung VCM (2018) A survey on security threats and defensive techniques of machine learning: a data driven view. IEEE Access 6:12103–12117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing University of TechnologyBeijingChina
  2. 2.College of Information Science and TechnologyBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  3. 3.Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous ServicesUniversity of Science and Technology BeijingBeijingChina
  4. 4.Provincial Key Lab of Information Coding and TransmissionSouthwest Jiaotong UniversityChengduChina

Personalised recommendations