Skip to main content

An Object Recognition Approach for Synthetic Aperture Radar Images

Abstract

In this paper, an object recognition approach for synthetic aperture radar (SAR) images is addressed, which is based on the enhanced kernel sparse representation of monogenic signal. It consists of two main modules. In the first module, to capture the spatial and spectral properties of a target at the same time, a multi-scale monogenic feature extraction scheme is proposed. In the second module, an enhanced kernel sparse representation-based classifier (KSRC) is designed. Different from the traditional KSRC, in the enhanced KSRC, we first integrate the kernel principal component analysis (KPCA) as well as the kernel fisher discriminant analysis (KFDA) to generate an augmented pseudo-transformation matrix. Then, a new discriminative feature mapping approach is presented by exploiting the augmented pseudo-transformation matrix so that the dimensionality of the kernel feature space can be effectively reduced. At last, the 1 -norm minimization is utilized to calculate the sparse coefficients for a test sample, and thus the inference can be reached in terms of the total reconstruction error. Experimental results on the public moving and stationary target acquisition and recognition dataset (MSTAR) demonstrate that the proposed method achieves high recognition accuracy for SAR automatic target recognition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Keydel ER, Lee SW, Moore JT (Jun. 1996) MSTAR extended operating conditions: a tutorial. Proc SPIE 2757:228–242

    Article  Google Scholar 

  2. 2.

    López-Martínez C, Pottier E (2007) Coherence estimation in synthetic aperture radar data based on speckle noise modeling. Appl Opt 46(4):544–558

    Article  Google Scholar 

  3. 3.

    Qi F, Ocket I, Schreurs D, Nauwelaers B (2012) A system-level simulator for indoor mmW SAR imaging and its applications. Opt Express 20(21):23811–23820

    Article  Google Scholar 

  4. 4.

    Zhang H, Nasrabadi NM, Zhang Y, Huang TS (2012) Multi-view automatic target recognition using joint sparse representation. IEEE Trans Aero Elec Sys 48(3):2481–2497

    Article  Google Scholar 

  5. 5.

    Ross TD, Worrell SW, Velten VJ, Mossing JC, Bryant ML (1998) Standard SAR ATR evaluation experiments using the MSTAR public release data set. Proc SPIE 3370:566–573

    Article  Google Scholar 

  6. 6.

    Huan R, Pan Y (2011) Decision fusion strategies for SAR image target recognition. IET Radar, Sonar Nav 5(7):747–755

    Article  Google Scholar 

  7. 7.

    Owirka GJ, Verbout SM, Novak LM (1999) Template-based SAR ATR performance using different image enhancement techniques. Proc SPIE 3721:302–319

    Article  Google Scholar 

  8. 8.

    Casasent D, Nehemiah A (2006) Confuser rejection performance of EMACH filters for MSTAR ATR. Proc SPIE 6245:62450D

    Article  Google Scholar 

  9. 9.

    Liu M, Wu Y, Zhang Q, Wang F, Li M (2016) Synthetic aperture radar target configuration recognition using locality-preserving property and the gamma distribution. IET Radar, Sonar Nav 10(2):256–263

    Article  Google Scholar 

  10. 10.

    Park J, Kim K (2014) Modified polar mapping classifier for SAR automatic target recognition. IEEE Trans Aero Elec Sys 50(2):1092–1107

    Article  Google Scholar 

  11. 11.

    DeVore MD, O’Sullivan JA (2004) Quantitative statistical assessment of conditional models for synthetic aperture radar. IEEE Trans Image Process 13(2):113–125

    Article  Google Scholar 

  12. 12.

    Zhou J, Shi Z, Cheng X, Fu Q (2011) Automatic target recognition of SAR images based on global scattering center model. IEEE Trans Geosci Remote Sens 49(10):3713–3729

    Article  Google Scholar 

  13. 13.

    Akbarizadeh G (2012) A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images. IEEE Trans Geosci Remote Sens 50(11):4358–4368

    Article  Google Scholar 

  14. 14.

    Liu X, Huang Y, Pei J, Yang J (2014) Sample discriminant analysis for SAR ATR. IEEE Geosci Remote Sens Letters 11(12):2120–2124

    Article  Google Scholar 

  15. 15.

    Cui Z, Cao Z, Yang J, Feng J, Ren H (2015) Target recognition in synthetic aperture radar images via non-negative matrix factorisation. IET Radar, Sonar Nav 9(9):1376–1385

    Article  Google Scholar 

  16. 16.

    Amoon M, Rezai-rad G (2014) Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features. IET Comput Vis 8(2):77–85

    Article  Google Scholar 

  17. 17.

    Srinivas U, Monga V, Raj RG (2014) SAR automatic target recognition using discriminative graphical models. IEEE Trans Aero Elec Sys 50(1):591–606

    Article  Google Scholar 

  18. 18.

    Zhao Q, Principe J (2001) Support vector machines for SAR automatic target recognition. IEEE Trans Aero Elec Sys 37(2):643–654

    Article  Google Scholar 

  19. 19.

    Sun Y, Liu Z, Todorovic S, Li J (2007) Adaptive boosting for SAR automatic target recognition. IEEE Trans Aero Elec Sys 43(1):112–125

    Article  Google Scholar 

  20. 20.

    Yang S, Ma Y, Wang M (2013) Compressive feature and kernel sparse coding-based radar target recognition. IET Radar, Sonar Nav 7(7):755–763

    Article  Google Scholar 

  21. 21.

    Dong G, Wang N, Kuang G (2014) Sparse representation of monogenic signal: with application to target recognition in SAR images. IEEE Signal Process Letters 21(8):952–956

    Article  Google Scholar 

  22. 22.

    Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144

    MathSciNet  Article  Google Scholar 

  23. 23.

    Felsberg M, Sommer G (2004) The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J Math Imag Vis 21(1–2):5–26

    MathSciNet  Article  Google Scholar 

  24. 24.

    Dong G, Kuang G, Zhao L, Lu J, Lu M (2014) Joint sparse representation of monogenic components: with application to automatic target recognition in SAR imagery. Proc IEEE Symposium on Geoscience and Remote Sensing 8(7):549–552

    Google Scholar 

  25. 25.

    Gao S, Tsang IW-H, Chia L-T (2013) Sparse representation with kernels. IEEE Trans Image Process 22(2):423–434

    MathSciNet  Article  Google Scholar 

  26. 26.

    Zhang L, Zhou W-D, Chang P-C, Liu J, Yan Z (2012) Kernel sparse representation-based classifier. IEEE Trans Signal Process 60(4):1684–1695

    MathSciNet  Article  Google Scholar 

  27. 27.

    Schölkopf B, Smola AJ, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  28. 28.

    Mika S, Rätsch G, Weston J, Schölkopf B, Müller K-R (1999) Fisher discriminant analysis with kernels. In: IEEE Int. workshop neural Netw. Signal process. IX, pp 41–48

    Google Scholar 

  29. 29.

    Yang M, Zhang L, Shiu SC-K, Zhang D (2012) Monogenic binary coding: an efficient local feature extraction approach to face recognition. IEEE Trans Inf Forensics Security 7(6):1738–1751

    Article  Google Scholar 

  30. 30.

    Dong G, Kuang G (2015) Classification on the monogenic scale space: application to target recognition in SAR image. IEEE Trans Image Process 24(8):2527–2539

    MathSciNet  Article  Google Scholar 

  31. 31.

    Dong G, Kuang G, Wang N, Zhao L, Lu J (2015) SAR target recognition via joint sparse representation of monogenic signal. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(7):3316–3328

    Article  Google Scholar 

  32. 32.

    Mossing JC, Ross TD (1998) An evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions. Proc SPIE 3370:554–565

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61603124, 61871218, 61801211, 61501233), Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYLX15_0278), Fundamental Research Funds for the Central Universities (Grant No. 2019B15314, 3082017NP2017421), and the Aeronautical Science Foundation of China (Grant No. 20152052026).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenbo Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ning, C., Liu, W., Zhang, G. et al. An Object Recognition Approach for Synthetic Aperture Radar Images. Mobile Netw Appl 26, 1259–1266 (2021). https://doi.org/10.1007/s11036-019-01341-4

Download citation

Keywords

  • Advanced image processing
  • Target recognition
  • Sparse representation
  • Monogenic signal