Data Driven Cyber-Physical System for Landslide Detection

  • Zhi Liu
  • Toshitaka Tsuda
  • Hiroshi Watanabe
  • Satoko Ryuo
  • Nagateru Iwasawa


Natural disaster is one of the most important research topics worldwide. In this paper, a data driven cyber-physical system is introduced to detect landslides. This system is composed of Wi-Sun acceleration sensors, which can detect the acceleration of the nearby environment in 3D domain, and the sensors are linked with the router (act as ’sink’ node) via Wi-Sun transmission (i.e. IEEE802.15.4g). The details of the detection system are explained and the landslide detection mechanism with low computational complexity is proposed. A traffic reduction method is proposed thereafter to help reduce the data needed for transmission by exploring the intra-correlations of the sensor data. This method can save the energy consumption without degrading the detection performance. Field test is conducted and the results show that the landslide can be detected and amount of data to be transmitted can be reduced, which verifies the system’s effectiveness.


Wireless sensor network WSN Landslide Intra-correlation Energy consumption Disaster Wi-Sun 



The research results have been achieved by ”Research and Development on Fundamental and Utilization Technologies for Social Big Data,” the Commissioned Research of National Institute of Information and Communications Technology (NICT), Japan.


  1. 1.
    Saha S, Matsumoto M (2007) A framework for disaster management system and wsn protocol for rescue operation. In: TENCON 2007-2007 IEEE Region 10 Conference. IEEE, pp 1–4Google Scholar
  2. 2.
    Chen D, Liu Z, Wang L, Dou M, Chen J, Li H (2013) Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems. Mob Netw Appl 18(5):651–663CrossRefGoogle Scholar
  3. 3.
    Tuna G, Mumcu TV, Gulez K, Gungor V, Erturk H (2012) Unmanned aerial vehicle-aided wireless sensor network deployment system for post-disaster monitoring. In: International Conference on Intelligent Computing. Springer, pp 298–305Google Scholar
  4. 4.
    Ali K, Nguyen HX, Vien Q-T, Shah P (2015) Disaster management communication networks: Challenges and architecture design. In: IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), 2015. IEEE, pp 537–542Google Scholar
  5. 5.
    Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330CrossRefGoogle Scholar
  6. 6.
    Al-Karaki JN, Kamal AE (2004) Routing techniques in wireless sensor networks: a survey. IEEE Wirel Commun 11(6):6–28CrossRefGoogle Scholar
  7. 7.
    Iyengar SS, Brooks RR (2016) Distributed sensor networks: sensor networking and applications. CRC press, Boca RatonMATHGoogle Scholar
  8. 8.
    Dong M, Ota K, Liu A, Guo M (2016) Joint optimization of lifetime and transport delay under reliability constraint wireless sensor networks. IEEE Trans Parallel Distrib Syst 27(1):225–236CrossRefGoogle Scholar
  9. 9.
    Wu F-J, Kao Y-F, Tseng Y-C (2011) From wireless sensor networks towards cyber physical systems. Pervasive Mobile Comput 7(4):397–413CrossRefGoogle Scholar
  10. 10.
    Chang K-H, Mason B (2012) The ieee 802.15. 4g standard for smart metering utility networks. In: 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm). IEEE, pp 476–480Google Scholar
  11. 11.
    Obata K, Mizutani K, Harada H (2016) Carrier frequency offset estimation scheme for ieee 802.15. 4g based wide area wi-sun systems. In: 2016 IEEE International Conference on Communications (ICC). IEEE, pp 1–6Google Scholar
  12. 12.
    Fadel E, Gungor V, Nassef L, Akkari N, Maik MA, Almasri S, Akyildiz IF (2015) A survey on wireless sensor networks for smart grid. Comput Commun 71:22–33CrossRefGoogle Scholar
  13. 13.
    Liu X-Y, Zhu Y, Kong L, Liu C, Gu Y, Vasilakos AV, Wu M-Y (2015) Cdc: Compressive data collection for wireless sensor networks. IEEE Trans Parallel Distrib Syst 26(8):2188–2197CrossRefGoogle Scholar
  14. 14.
    Gungor V, Hancke GP (2009) Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans Ind Electron 56(10):4258–4265CrossRefGoogle Scholar
  15. 15.
    Pottie GJ, Kaiser WJ (2000) Wireless integrated network sensors. Commun ACM 43(5):51–58CrossRefGoogle Scholar
  16. 16.
    Alliance Z et al (2006) Zigbee specificationGoogle Scholar
  17. 17.
    Feng J, Liu Z, Ji Y (2014) Wireless channel loss analysis-a case study using wifi-direct. In: Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International. IEEE, pp 244–249Google Scholar
  18. 18.
    Castillo-Effer M, Quintela DH, Moreno W, Jordan R, Westhoff W (2004) Wireless sensor networks for flash-flood alerting. In: 2004. Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, vol 1. IEEE, pp 142–146Google Scholar
  19. 19.
    Han R, Zhao X, Yu Y, Guan Q, Hu W, Li M (2016) A cyber-physical system for girder hoisting monitoring based on smartphones. Sensors 16(7):1048CrossRefGoogle Scholar
  20. 20.
    Standoli CE, Guarneri MR, Perego P, Mazzola M, Mazzola A, Andreoni G A smart wearable sensors system for counter-fighting overweight in teenagersGoogle Scholar
  21. 21.
    Tan G, Bertier M, Kermarrec A-M (2009) Visibility-graph-based shortest-path geographic routing in sensor networks. In: INFOCOM 2009 IEEE. IEEE, pp 1719–1727Google Scholar
  22. 22.
    Hammoudeh M, Newman R (2015) Adaptive routing in wireless sensor networks: Qos optimisation for enhanced application performance. Inf Fusion 22:3–15CrossRefGoogle Scholar
  23. 23.
    Yu F, Pan S, Hu G (2015) Hole plastic scheme for geographic routing in wireless sensor networks. In: 2015 IEEE International Conference on Communications (ICC). IEEE, pp 6444–6449Google Scholar
  24. 24.
    Suriyachai P, Roedig U, Scott A (2012) A survey of mac protocols for mission-critical applications in wireless sensor networks. IEEE Commun Surv Tutorials 14(2):240–264CrossRefGoogle Scholar
  25. 25.
    Huang P, Xiao L, Soltani S, Mutka MW, Xi N (2013) The evolution of mac protocols in wireless sensor networks: A survey. IEEE Commun Surv Tutorials 15(1):101–120CrossRefGoogle Scholar
  26. 26.
    Rault T, Bouabdallah A, Challal Y (2014) Energy efficiency in wireless sensor networks: A top-down survey. Comput Netw 67:104–122CrossRefGoogle Scholar
  27. 27.
    Ren J, Zhang Y, Zhang N, Zhang D, Shen X (2016) Dynamic channel access to improve energy efficiency in cognitive radio sensor networks. IEEE Trans Wirel Commun 15(5):3143–3156CrossRefGoogle Scholar
  28. 28.
    Santini S, Romer K (2006) An adaptive strategy for quality-based data reduction in wireless sensor networks. In: Proceedings of the 3rd international conference on networked sensing systems (INSS 2006), pp 29–36Google Scholar
  29. 29.
    Luo H, Luo J, Liu Y, Das SK (2006) Adaptive data fusion for energy efficient routing in wireless sensor networks. IEEE Trans Comput 55(10):1286–1299CrossRefGoogle Scholar
  30. 30.
    Zhu Y, Song E, Zhou J, You Z (2005) Optimal dimensionality reduction of sensor data in multisensor estimation fusion. IEEE Trans Signal Process 53(5):1631–1639MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Msechu EJ, Giannakis GB (2012) Sensor-centric data reduction for estimation with wsns via censoring and quantization. IEEE Trans Signal Process 60(1):400–414MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu Z, Tsuda T, Watanabe H (2015) Traffic deduction exploring sensor data’s intra-correlations in train track monitoring wsn. In: SENSORS IEEE, pp 1–4Google Scholar
  33. 33.
    Ryuo S, Hada A, Iwasawa N, Kawamura T, Nozue M, Kawasaki K The early detection method for embankment collapse using acceleration data, pp 517–522Google Scholar
  34. 34.
    Iwasawa N, Hada A, Ryuo S, Kawamura T, Nozue M, Kawasaki K (2015) The applicability for condition monitoring system in railway by using the Wi-SUN network (in Japanese), pp 1–6Google Scholar
  35. 35.
    Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput Commun 30(14):2826–2841CrossRefGoogle Scholar
  36. 36.
    Liu Z, Cheung G, Ji Y (2013) Optimizing distributed source coding for interactive multiview video streaming over lossy networks. IEEE Trans Circ Syst Video Technol 23(10):1781–1794CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhi Liu
    • 1
  • Toshitaka Tsuda
    • 1
  • Hiroshi Watanabe
    • 1
  • Satoko Ryuo
    • 2
  • Nagateru Iwasawa
    • 2
  1. 1.Waseda UniversityShinju-kuJapan
  2. 2.Railway Technical Research InstituteTokyoJapan

Personalised recommendations