Mobile Networks and Applications

, Volume 23, Issue 3, pp 624–638 | Cite as

Building and Climbing based Visual Navigation Framework for Self-Driving Cars

  • Chengshan Qian
  • Xinfeng Shen
  • Yonghong Zhang
  • Qing Yang
  • Jifeng Shen
  • Haiwei Zhu


This paper proposes a visual navigation strategy for self-driving car running on a constant-width road. The task is to process road image with multiple elements information for planing path and providing the basis for acceleration and deceleration. Common road elements are straight, bend, ramp and crossroad. We propose a novel navigation framework (BCVN) that explicitly decomposes the visual navigation task into navigation line extraction, deviation calculation and curvature calculation. The core idea of navigation line extraction is Building-Climbing. Building is to build foundations with a small number of consecutive points. Climbing is to climb points on the basis of the foundations. Building and Climbing are both used in search of bilateral edges. Deviation calculation use the method of dynamic weighting for self-driving car to control steering. Curvature calculation is to obtain a suitable value for self-driving car to achieve acceleration and deceleration control. We use least squares algorithm to assist in bilateral edges search and curvature calculation. We describe our real-time implementation of the BCVN framework, the method of dynamic weight and Building-Climbing. We test the strategy on the self-driving car platform, which shows strong adaptability and high efficiency.


Visual navigation Dynamic weighting Curvature calculation Building-Climbing Least squares algorithm 



The work is supported by the National Science Foundation of China (Grant no. 51575283), PAPD fund.


  1. 1.
    Krajník T, Přeučil L (2008) A simple visual navigation system with convergence property. In: European robotics symposium, pp 283–292Google Scholar
  2. 2.
    Lv N, Niu S, Li X (2011) Research on image processing algorithm of intelligent car with visual navigation. In: International Forum on Strategic Technology, pp 1215–1220Google Scholar
  3. 3.
    Juberts M, Barbera AJ (2004) Status report on next-generation ladar for driving unmanned ground vehicles. Proc Spie 5609:1–12CrossRefGoogle Scholar
  4. 4.
    Yun DS, Choi JH, Lee GY, Kim JH (2001) The concept for the integration of tele-operated unmanned vehicle and driving simulator, in. In: IEEE International Symposium on Industrial Electronics, 2001. Proceedings. ISIE, vol 3, pp 1419–1424Google Scholar
  5. 5.
    Moon HC, Lee JC, Kim JH, Lee DM (2009) Development of unmanned ground vehicles available of urban drive. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 786–790Google Scholar
  6. 6.
    Larsen AKR, Olson K (1996) Intersection navigation for unmanned ground vehicles. SPIE 2738:14–25Google Scholar
  7. 7.
    Ren X, Cai Z (2010) Kinematics model of unmanned driving vehicle. In: Intelligent Control and Automation, pp 5910–5914Google Scholar
  8. 8.
    Lefsky MA, Cohen WB, Parker GG, Harding DJ (2001) Bioone online journals - lidar remote sensing for ecosystem studies. Bioscience, OxfordGoogle Scholar
  9. 9.
    Klett JD (1981) Stable analytical inversion solution for processing lidar returns. Appl Opt 20(2):211CrossRefGoogle Scholar
  10. 10.
    Dieter DE (2002) Vision for ground vehicles: history and prospects. Int J Veh Auton Syst 1(1):1–44CrossRefGoogle Scholar
  11. 11.
    Armingol JM, de la Escalera A, Hilario C, Collado JM, Carrasco JP, Flores MJ, Pastor JM, Rodríguez F. J. (2007) Ivvi: Intelligent vehicle based on visual information. Robot Auton Syst 155(12):904–916CrossRefGoogle Scholar
  12. 12.
    Anagnostopoulos CNE, Anagnostopoulos IE, Loumos V, Kayafas E (2006) A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans Intell Transp Syst 7(3):377–392CrossRefGoogle Scholar
  13. 13.
    Wang FY (2010) Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans Intell Transp Syst 11(3):630–638CrossRefGoogle Scholar
  14. 14.
    Zhou Z, Yang C.-N., Chen B, Sun X, Liu Q, Wu QMJ (2016) Effective and Efficient Image Copy Detection with Resistance to Arbitrary Rotation. IEICE Trans Inf Syst E99D(6):1531–1540CrossRefGoogle Scholar
  15. 15.
    Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A Privacy-Preserving and Copy-Deterrence Content-Based Image Retrieval Scheme in Cloud Computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608CrossRefGoogle Scholar
  16. 16.
    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518CrossRefGoogle Scholar
  17. 17.
    Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176CrossRefGoogle Scholar
  18. 18.
    Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast Motion Estimation Based on Content Property for Low-Complexity H.265/HEVC Encoder. IEEE Trans Broadcast 62(3):675–684CrossRefGoogle Scholar
  19. 19.
    Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image Represent 40(B):516–524CrossRefGoogle Scholar
  20. 20.
    Commuri S, Jagannathan S, Lewis FL (2015) Cmac neural network control of robot manipulators. J Field Rob 14(14):465–482MATHGoogle Scholar
  21. 21.
    Blank TB, Brown SD, Calhoun AW, Doren DJ (2015) Neural network models of potential energy surfaces. J Chem Theory Comput 1(103):4129–4137Google Scholar
  22. 22.
    Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. Comput Sci 14(7):38–39Google Scholar
  23. 23.
    Wu D, Zhang P, Wang H, Wang C, Wang R (2016) Node service ability aware packet forwarding mechanism in intermittently connected wireless networks. IEEE Trans Wirel Commun PP(99):1–1CrossRefGoogle Scholar
  24. 24.
    Wu D, Yan J, Wang H, Wu D, Wang R (2017) Social attribute aware incentive mechanism for device-to-device video distribution. IEEE Trans Multimedia PP(99):1–1Google Scholar
  25. 25.
    Doudna JA, Cameron L (2013) Noland, Multiple sensors ensure guide strand selection in human rnai pathways. RNA 19(5):639–648CrossRefGoogle Scholar
  26. 26.
    Guzel M, Unal M (2015) A survey of insect eye inspired visual sensors. In: International Conference on Electrical and Electronics Engineering, pp 139–142Google Scholar
  27. 27.
    Yang Q, Lim A, Li S, Fang J, Agrawal P (2010) Acar: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Netw Appl 15(1):36–60CrossRefGoogle Scholar
  28. 28.
    Qu Z, Keeney J, Robitzsch S, Zaman F, Wang X (2016) Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Commun 13(7):108–116CrossRefGoogle Scholar
  29. 29.
    Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98B(1):190–200CrossRefGoogle Scholar
  30. 30.
    Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352CrossRefGoogle Scholar
  31. 31.
    Xianyi Chen SC, Wu Y (2017) Coverless information hiding method based on the chinese character encoding. J Intell Technol 18(2):91–98Google Scholar
  32. 32.
    Wu D, Wang Y, Wang H, Yang B, Wang C, Wang R (2016) Dynamic coding control in social intermittent connectivity wireless networks. IEEE Trans Veh Technol 65(9):7634–7646CrossRefGoogle Scholar
  33. 33.
    Rosenblum M, Davis LS (1996) An improved radial basis function network for visual autonomous road following. IEEE Trans Neural Netw 7(5):1111–20CrossRefGoogle Scholar
  34. 34.
    Chen S, Weng J (1998) State-based shoslif for indoor visual navigation. In: International Conference on Pattern Recognition, p 482Google Scholar
  35. 35.
    Royer E, Lhuillier M, Dhome M, Lavest JM (2007) Monocular vision for mobile robot localization and autonomous navigation. Int J Comput Vis 74(3):237–260CrossRefMATHGoogle Scholar
  36. 36.
    Lu Y, Song D (2017) Visual navigation using heterogeneous landmarks and unsupervised geometric constraints. IEEE Trans Robot 31(3):736–749CrossRefGoogle Scholar
  37. 37.
    Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Chengshan Qian
    • 1
    • 2
  • Xinfeng Shen
    • 2
  • Yonghong Zhang
    • 3
  • Qing Yang
    • 4
  • Jifeng Shen
    • 5
  • Haiwei Zhu
    • 5
  1. 1.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  3. 3.School of Information and ControlNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Gianforte School of ComputingMontana State UniversityBozemanUSA
  5. 5.School of Electronic and Informatics EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations