Skip to main content

Advertisement

Log in

Energy Harvesting Cognitive Radio Networking for IoT-enabled Smart Grid

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) provides connectivity to the objects that monitor and sense the environment to integrate physical world with digital world. If IoT is enabled in the Smart Grid (SG), it can benefit from advantages of the IoT such as interoperability, connectivity, etc. By combining the IoT with energy harvesting (EH) and cognitive radio (CR) techniques, the problems of SG, such as harsh channel conditions and limited battery power, may be resolved. Hence, incorporation of EH and CR reveals a new networking paradigm for IoT-enabled SG. To this end, we first introduce CR usage in the IoT-enabled SG, and explain the advantages and challenges of CRs. Furthermore, we propose EH approaches for the resource constraint of wireless devices in the IoT-enabled SG. Operation and node architecture of energy harvesting cognitive radios (EH-CR), and network architecture of the IoT-enabled SG are described to explain details of our networking paradigm. Open issues and future research directions are discussed to enable this new paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): A vision, architectural elements, and future directions. Comput Netw 29(7):1645–1660

    Google Scholar 

  2. Atzori L, Iera A, Morabito G (2010) The Internet of things: A survey. Comput Netw 54(15):2787–2805

    Article  MATH  Google Scholar 

  3. Chen S, Xu H, Liu D, Hu B, Wang H (2014) A vision of IoT: Applications, challenges, and opportunities with China perspective. IEEE Internet Things J 1(4):349–359

    Article  Google Scholar 

  4. Bose A (2010) Smart transmission grid applications and their supporting infrastructure. IEEE Trans Smart Grid 1(1):11–19

    Article  Google Scholar 

  5. Farhangi H (2010) The path of the smart grid. IEEE Power Energ Mag 8(1):18–28

    Article  MathSciNet  Google Scholar 

  6. Hauser CH, Bakken DE, Bose A (2005) A failure to communicate: next generation communication requirements, technologies, and architecture for the electric power grid. IEEE Power Energ Mag 3(2):47–55

    Article  Google Scholar 

  7. Bicen AO, Akan OB, Gungor VC (2012) Spectrum-aware and cognitive sensor networks for smart grid applications. IEEE Commun Mag 50(5):158–165

    Article  Google Scholar 

  8. Shah DU, Patel CB (2016) IoT Enabled Smart Grid. In: National Conference on ICT & IoT

  9. Shah GA, Gungor VC, Akan OB (2013) A cross-layer qos-aware communication framework in cognitive radio sensor networks for smart grid applications. IEEE Trans Ind Inf 9(3):1477–1485

    Article  Google Scholar 

  10. Ou Q et al (2012) Application of internet of things in smart grid power transmission. In: 3rd FTRA international conference mobile, ubiquitous, and intelligent computing

  11. Ahmed E, Yaqoob I, Gani A, Imran M, Guizani M (2016) Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wirel Commun 23(5):10–16

    Article  Google Scholar 

  12. Gungor VC, Lu B, Hancke GP (2010) Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans Ind Electronics 57(10):3557–3564

    Article  Google Scholar 

  13. Gungor VC, Sahin D, Kocak T, Ergut S (2011) Smart grid technologies: Communication technologies and standards. IEEE Trans Ind Inf 7(4):529–539

    Article  Google Scholar 

  14. Gungor VC, Lu B, Hancke GP (2010) Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Trans Ind Electron 57(10):3557–3564

    Article  Google Scholar 

  15. Ghassemi A, Bavarian S, Lampe L (2010) Cognitive radio for smart grid communications. In: 1st IEEE international conference on smart grid communications

  16. Akyildiz IF, Lee W -Y, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput Netw 50(13):2127–2159

    Article  MATH  Google Scholar 

  17. Yu R et al (2011) Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Netw 25(5):6–14

    Article  Google Scholar 

  18. Gao J et al (2012) A survey of communication/networking in smart grids. Futur Gener Comput Syst 28 (2):391–404

    Article  Google Scholar 

  19. Kuzlu M, Pipattanasomporn M, Rahman S (2014) Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput Netw 67(2014):74–88

    Article  Google Scholar 

  20. Ergul E, Cetinkaya O, Akan OB (2016) Cognitive radio sensor networks in smart grid. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Yang Y, Lambert F, Divan D (2007) A survey on technologies for implementing sensor networks for power delivery systems. In: IEEE power engineering society general meeting

  22. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: A survey. Comput Netw 38(4):393–422

    Article  Google Scholar 

  23. Gungor VC, Hancke GP (2009) Industrial wireless sensor network: Challenges, design principles, and technical approaches. IEEE Trans Ind Electron 56(10):4258–4265

    Article  Google Scholar 

  24. Wu Q et al (2014) Cognitive internet of things: a new paradigm beyond connection. IEEE Internet Things J 1(2):129–143

    Article  Google Scholar 

  25. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas 23(2):201–220

    Article  Google Scholar 

  26. Akyildiz IF, Lee W -Y, Vuran MC, Mohanty S (2008) A Survey on Spectrum Management in Cognitive Radio Networks. IEEE Commun Mag 46(4):40–48

    Article  Google Scholar 

  27. Bui N, Castellani AP, Casari P, Zorzi M (2012) The internet of energy: A web-enabled smart grid system. IEEE Netw 26(4):39–45

    Article  Google Scholar 

  28. Matiko JW et al (2013) Review of the application of energy harvesting in buildings. Meas Sci Technol 25 (1):1–25

    Google Scholar 

  29. Ku ML et al (2015) Advances in energy harvesting communications: Past, present, and future challenges. IEEE Commun Surv Tutorials 18(2):1384–1412

    Article  Google Scholar 

  30. Moghe R et al (2009) A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications. In: IEEE Energy Conv. Congr.: 3550–3557

  31. Cetinkaya O, Akan OB (2017) Electric-field energy harvesting in wireless networks. IEEE Wireless Communications 24(2):34–41

    Article  Google Scholar 

  32. OpenHAN task force of the utility AMI working group (2008) Utility AMI 2008 home area network system requirements specification. http://www.utilityami.org

  33. Kailas A, Cecchi V, Mukherjee A (2012) A survey of communications and networking technologies for energy management in buildings and home automation. J Comput Netw Commun 2012:1–12

    Article  Google Scholar 

  34. Cetinkaya O, Akan OB (2015) A DASH7-based Metering System. In: Proceedings the 13th Annual Consumer Communications and Networking Conference (CCNC)

  35. Erol-Kantarci M, Mouftah HT (2011) Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans Smart Grid 2(2):314–325

    Article  Google Scholar 

  36. Yu R et al (2012) Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Netw 25(5):6–14

    Article  Google Scholar 

  37. Wang W, Xu Y, Khanna M (2011) A Survey on the Communication Architectures in Smart Grid. Comput Netw 55(15):3604–3629

    Article  Google Scholar 

  38. Baig MS, Das S, Rajalakshmi P (2013) CR based WSAN for Field Area Network in Smart Grid. In: Proceedings international conference on advances in computing, communications and informatics (ICACCI)

  39. Sood VK, Fischer D, Eklund JM, Brown T (2009) Developing a communication infrastructure for the smart grid. In: IEEE electrical power and energy conference (EPEC)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ozger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozger, M., Cetinkaya, O. & Akan, O.B. Energy Harvesting Cognitive Radio Networking for IoT-enabled Smart Grid. Mobile Netw Appl 23, 956–966 (2018). https://doi.org/10.1007/s11036-017-0961-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0961-3

Keywords

Navigation