A Chemical Reaction Algorithm to Solve the Router Node Placement in Wireless Mesh Networks


This paper considers the problem of router node placement (WMN-RNP) in wireless mesh networks (WMN). A wireless mesh network consists of three kinds of nodes: mesh clients, mesh routers and gateways interconnected via radio links. The problem considered in this paper is the following: given a set of mesh clients deployed in a rectangular area, determine the best placement of mesh routers so that both client coverage and network connectivity are maximized. This issue is known to be NP-hard since it can be modeled as a facility location problem. To solve this issue, we propose to use a metaheuristic technique inspired from the interactions between molecules in chemical reactions to reach a low stable energy state, namely Chemical Reaction Optimization algorithm (CRO). A simulation tool has been developed to compare the performance of our CRO algorithm to the existing Genetic Algorithm (GA) and Simulated Annealing (SA). Simulation results show that our proposed algorithm can improve client coverage by 4.5% to 18% (3% to 17% respectively) and network connectivity by 5% to 61% (4.5% to 41% respectively) when compared to GA algorithm (SA algorithm respectively).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Aikens Charles H (1985) Facility location models for distribution planning. Eur J Oper Res 22(13):263–279

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Akyildiz IF, Wang X (2005) A survey on wireless mesh networks. IEEE Commun Mag 43(9):S23–S30

    Article  Google Scholar 

  3. 3.

    Barolli A, Oda T, Ikeda M, Barolli L, Xhafa F, Loia V (2015) Node placement for wireless mesh networks: analysis of wmn-ga system simulation results for different parameters and distributions. J Comput Syst Sci 81(8):1496–1507

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Bechikh S, Chaabani A, Said LB (2015) An efficient chemical reaction optimization algorithm for multiobjective optimization. IEEE Transactions on Cybernetics 45(10):2051–2064

    Article  Google Scholar 

  5. 5.

    Benyamina D, Hafid A, Gendreau M, Maureira J, et al. (2011) On the design of reliable wireless mesh network infrastructure with qos constraints. Comput Netw 55(8):1631–1647

    Article  Google Scholar 

  6. 6.

    Benyamina D, Hafid A, Hallam N, Gendreau M, Maureira J (2012) A hybrid nature-inspired optimizer for wireless mesh networks design. Comput Commun 35(10):1231–1246

    Article  Google Scholar 

  7. 7.

    Bruno R, Conti M, Gregori E (2005) Mesh networks: commodity multihop ad hoc networks. IEEE Commun Mag 43(3):123–131

    Article  Google Scholar 

  8. 8.

    Eberhart RC, Kennedy J, et al. (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, New York, pp 39–43

  9. 9.

    Fu W, Wang X, Agrawal DP (2009) Characterizing deployment and distribution of self-powered mesh routers in wireless mesh networks. In: 2009 IEEE 28Th international performance computing and communications conference. IEEE, pp 185–192

  10. 10.

    Huan X, Wang B, Mo Y (2014) Placement of rechargeable routers based on proportional fairness in green mesh networks. In: 2014 23Rd international conference on computer communication and networks (ICCCN). IEEE, pp 1–8

  11. 11.

    Huan X, Wang B, Mo Y, Yang LT (2015) Rechargeable router placement based on efficiency and fairness in green wireless mesh networks. Comput Netw 78:83–94

    Article  Google Scholar 

  12. 12.

    Kim HJ, Lam HS, Kang S (2011) Chemical reaction optimization for task scheduling in grid computing. IEEE Transactions on Parallel and Distributed Systems 22(10):1624–1631

    Article  Google Scholar 

  13. 13.

    Lam AY, Li VO (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 14(3):381–399

    Article  Google Scholar 

  14. 14.

    Lam AY, Li VO (2012) Chemical reaction optimization: a tutorial. Memetic Computing 4(1):3–17

    Article  Google Scholar 

  15. 15.

    Li F, Wang Y, Li XY, Nusairat A, Wu Y (2008) Gateway placement for throughput optimization in wireless mesh networks. Mobile Networks and Applications 13(1-2):198–211

    Article  Google Scholar 

  16. 16.

    Lin CC (2013) Dynamic router node placement in wireless mesh networks: a pso approach with constriction coefficient and its convergence analysis. Inf Sci 232:294–308

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Lin CC, Chen TH, Chin HH (2016) Adaptive router node placement with gateway positions and qos constraints in dynamic wireless mesh networks. J Netw Comput Appl 74(C):149–164

    Article  Google Scholar 

  18. 18.

    Lin CC, Chen TH, Jhong SY (2015) Wireless mesh router placement with constraints of gateway positions and qos. In: 2015 11th international conference on Heterogeneous networking for quality, reliability, security and robustness (QSHINE). IEEE, pp 72–74

  19. 19.

    Lin CC, Li YS, Deng DJ (2014) A bat-inspired algorithm for router node placement with weighted clients in wireless mesh networks. In: 2014 9th international conference on communications and networking in China (CHINACOM). IEEE, pp 139–143

  20. 20.

    Lin CC, Lin YL, Liu WY (2013) Solving router nodes placement problem with priority service constraint in wmns using simulated annealing. In: International conference on grid and pervasive computing. Springer, pp 811–818

  21. 21.

    Lin CC, Tseng PT, Wu TY, Deng DJ (2016) Social-aware dynamic router node placement in wireless mesh networks. Wirel Netw 22(4):1235–1250

    Article  Google Scholar 

  22. 22.

    Mandhare V, Thool V, Manthalkar R (2016) Qos routing enhancement using metaheuristic approach in mobile ad-hoc network. Comput Netw 110:180–191

    Article  Google Scholar 

  23. 23.

    Oda T, Elmazi D, Barolli A, Sakamoto S, Barolli L, Xhafa F (2016) A genetic algorithm-based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. Soft Comput 20(7):2627–2640

    Article  Google Scholar 

  24. 24.

    Pathak PH, Dutta R (2011) A survey of network design problems and joint design approaches in wireless mesh networks. IEEE Communications Surveys & Tutorials 13(3):396–428

    Article  Google Scholar 

  25. 25.

    Rao PS, Banka H (2016) Novel chemical reaction optimization based unequal clustering and routing algorithms for wireless sensor networks. Wireless Networks 1–20. https://doi.org/10.1007/s11,276--015--1148--0

  26. 26.

    Sarigiannidis P, Louta M, Papadimitriou G, Nicopolitidis P, Diamantaras K, Tinnirello I, Verikoukis C (2015) A metaheuristic bandwidth allocation scheme for fiwi networks using ant colony optimization. In: 2015 IEEE symposium on communications and vehicular technology in the benelux (SCVT). IEEE, pp 1–6

  27. 27.

    Sayad L, Aissani D, Bouallouche-Medjkoune L (2016) On-demand routing protocol with tabu search based local route repair in mobile ad hoc networks. Wirel Pers Commun 90(2):515–536

    Article  Google Scholar 

  28. 28.

    Sayad L, Bouallouche-Medjkoune L, Aissani D (2016) Iwdrp: an intelligent water drops inspired routing protocol for mobile ad hoc networks. Wirel Pers Commun 1–21. https://doi.org/10.1007/s11,277--016--3692--z

  29. 29.

    Semchedine F, Bouallouche-Medjkoune L, Bennacer L, Aber N, Aïssani D (2012) Routing protocol based on tabu search for wireless sensor networks. Wirel Pers Commun 67(2):105–112

    Article  Google Scholar 

  30. 30.

    Shin DH, Bagchi S (2013) An optimization framework for monitoring multi-channel multi-radio wireless mesh networks. Ad Hoc Netw 11(3):926–943

    Article  Google Scholar 

  31. 31.

    Sun J, Wang Y, Li J, Gao K (2011) Hybrid algorithm based on chemical reaction optimization and lin-kernighan local search for the traveling salesman problem. In: 2011 seventh international conference on Natural computation (ICNC), vol 3. IEEE, pp 1518–1521

  32. 32.

    Tsai CW, Tsai PW, Pan JS, Chao HC (2015) Metaheuristics for the deployment problem of wsn: a review. Microprocess Microsyst 39(8):1305–1317

    Article  Google Scholar 

  33. 33.

    Xhafa F, Barolli A, Sánchez C, Barolli L (2011) A simulated annealing algorithm for router nodes placement problem in wireless mesh networks. Simul Model Pract Theory 19(10):2276–2284

    MATH  Article  Google Scholar 

  34. 34.

    Xhafa F, Sánchez C, Barolli A, Takizawa M (2015) Solving mesh router nodes placement problem in wireless mesh networks by tabu search algorithm. J Comput Syst Sci 81(8):1417–1428

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Younis M, Akkaya K (2008) Strategies and techniques for node placement in wireless sensor networks: a survey. Ad Hoc Netw 6(4):621–655

    Article  Google Scholar 

  36. 36.

    Zhou H, Ji Y, Zhao B (2015) Tabu-search-based metaheuristic resource-allocation algorithm for svc multicast over wireless relay networks. IEEE Trans Veh Technol 64(1):236–247

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lamri Sayad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sayad, L., Bouallouche-Medjkoune, L. & Aissani, D. A Chemical Reaction Algorithm to Solve the Router Node Placement in Wireless Mesh Networks. Mobile Netw Appl 25, 1915–1928 (2020). https://doi.org/10.1007/s11036-017-0941-7

Download citation


  • Wireless mesh network
  • Router node placement
  • Bio-inspired algorithm
  • Metaheuristic
  • Chemical reaction optimization