A Cognitive Routing Protocol for Bio-Inspired Networking in the Internet of Nano-Things (IoNT)

  • Fadi Al-Turjman


In this paper, we propose a framework for data delivery in nano-scale networks, where numerous wireless sensors are distributed on a human body, small object, tiny plant root, etc. Our framework caters for green energy-efficient applications in the Internet of Nano Things (IoNT) where data is relayed via nano-routers from a multifarious nanonodes towards a gateway connected to a large-scale network such as the Internet. We consider the entire network energy while choosing the next hop for our routed packets in the targeted wireless nanosensor network. Our delivery approach considers resource limitations in terms of hop count, and remaining energy levels. Moreover, extensive simulations are performed and the results confirm the effectiveness of the proposed approach in comparison to other baseline energy-aware routing protocols.


Data routing Energy-efficiency Internet of Nano-things Nanonetworks 


  1. 1.
    Al-Fagih A, Al-Turjman F, Alsalih W, Hassanein H (2013) A priced public sensing framework for heterogeneous IoT architectures. IEEE Trans Emerg Top Comput 1(1):135–147Google Scholar
  2. 2.
    Al-Turjman F. (2016) Impact of user's habits on smartphones’ sensors: an overview”, inter. IEEE Symposium HONET-ICT. Kyrenia, Cyprus, pp. 70–74Google Scholar
  3. 3.
    Ali S, Madani S (2011) Distributed Efficient Multi Hop Clustering Protocol for Mobile Sensor Networks. Int Arab J Inf Technol 8(3):302–309Google Scholar
  4. 4.
    Al-Turjman F, Hassanein H, Ibnkahla M (2015) Towards prolonged lifetime for deployed WSNs in outdoor environment monitoring. Ad Hoc Netw 24(A):172–185CrossRefGoogle Scholar
  5. 5.
    Hasan M, Al-Turjman F, Al-Rizzo H (2017) Optimized Multi-Constrained Quality-of-Service Multipath Routing Approach for Multimedia Sensor Networks. IEEE Sensors.
  6. 6.
    Massimiliano P et al (2014) A routing framework for energy harvesting wireless nanosensor networks in the Terahertz Band. Wirel Netw 2(5):1169–1183Google Scholar
  7. 7.
    Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: A new communication paradigm. Comput Netw 52(12):2260–2279CrossRefGoogle Scholar
  8. 8.
    Sohrabi K et al (2000) Protocols for self-organization of a wireless sensor network. IEEE Pers Commun 7:16–27CrossRefGoogle Scholar
  9. 9.
    B. Deb, S. Bhatnagar, and B. Nath (2003) ReInForM: reliable information forwarding using multiple paths in sensor networks. In: Proc. IEEE Conf. Local Computer Netw., pp. 406–415Google Scholar
  10. 10.
    Hasan M, Al-Rizzo H, Al-Turjman F (2017) A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Multimedia Wireless Sensor Networks. IEEE Comm Surv Tutorials.
  11. 11.
    S. K. Singh, M. P. Singh, D. K. Singh (2010) Routing protocols in wireless sensor networks – a survey. Int J Computer Sci Eng Surv (IJCSES), vol.1, no.2Google Scholar
  12. 12.
    Samet H (2008) K-Nearest Neighbor Finding Using MaxNearestDist. IEEE Trans Pattern Anal Mach Intell 30(2):243–252CrossRefGoogle Scholar
  13. 13.
    Al-Turjman F (2017) Information-centric framework for the internet of things (IoT): traffic modelling & Optimization. Elsevier Future Generation Computer Systems.
  14. 14.
    Tsioliaridou A et al. (2015) CORONA: A Coordinate and Routing system for Nanonetworks." ACM Proc. of the 2 nd Int. Conf. on Nanoscale Computing and CommunicationGoogle Scholar
  15. 15.
    Liaskos C, Tsioliaridou A (2015) A Promise of Realizable, Ultra-Scalable Communications at nano-Scale: A multi-Modal nano-Machine Architecture. IEEE Trans Comput 64(5):1282–1295MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. Khan, A. S. K. Pathan and N. A. Alrajeh (2012)Wireless sensor networks. In: Current status and future trends, ed. 1, MA: CRC Press, ch. 1Google Scholar
  17. 17.
    Agoulmine N, Kim K, Kim S, Rim T, Lee J-S, Meyyappan M (2012) Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wirel Commun 19(5):42–51CrossRefGoogle Scholar
  18. 18.
    Akyildiz IF, Jornet JM (2010) The Internet of Nano-Things. IEEE Wireless Commun 17(6):58–63CrossRefGoogle Scholar
  19. 19.
    Al-Turjman F (2017) Cognition in Information-Centric Sensor Networks for IoT Applications: An Overview. Ann Telecommun 72(1):3–18CrossRefGoogle Scholar
  20. 20.
    Singh G, Al-Turjman F (2016) Learning Data Delivery Paths in QoI-Aware Information-Centric Sensor Networks. IEEE Internet Things J 3(4):572–580CrossRefGoogle Scholar
  21. 21.
    Singh G, Al-Turjman F (2016) A Data Delivery Framework for Cognitive Information-Centric Sensor Networks in Smart Outdoor Monitoring. Comput Commun 74(1):38–51CrossRefGoogle Scholar
  22. 22.
    Baranidharan B, Santhi B (2011) An Evolutionary Approach to Improve the Life Time of The Wireless Sensor Networks. J Theor Appl Inf Technol 33(2):177–183Google Scholar
  23. 23.
    F. Lewis (2005)Wireless sensor networks. In: Smart environments: technology, protocols, and applications, New York,ch.2Google Scholar
  24. 24.
    Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221CrossRefGoogle Scholar
  25. 25.
    F. Al-Turjman (2016) “Hybrid approach for mobile couriers election in smart-cities”. In: Proc. of the IEEE Local Computer Networks (LCN), Dubai, UAE, pp. 507–510Google Scholar
  26. 26.
    H. Yu, B. Ng, and W. Seah (2015) Forwarding Schemes for EM-based Wireless Nanosensor Networks in the Terahertz Band. ACM Proc. of the 2nd Int. Conf. on Nanoscale Computing and CommunicationGoogle Scholar
  27. 27.
    P. Wang, J. Jornet, M. Malik, N. Akkari, I. Akyildiz (2013) Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc NetwGoogle Scholar
  28. 28.
    Yang K, Pellegrini A, Munoz M, Brizzi A, Alomainy A, Hao Y (2015) Numerical analysis and characterization of THz propagation channel for body-centric nano-communications. IEEE Trans Terahertz Technol 5(3):419–426CrossRefGoogle Scholar
  29. 29.
    Sitti M et al (2015) Biomedical applications of untethered mobile milli/microrobots. Proc IEEE 103(2):205–224CrossRefGoogle Scholar
  30. 30.
    Santagati GE, Melodia T (2014) Opto-ultrasonic communications for wireless intra-body nanonetworks. Nano Commun Netw 5(1):3–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer EngineeringMiddle East Technical UniversityMersinTurkey

Personalised recommendations