Mobile Networks and Applications

, Volume 22, Issue 5, pp 983–994 | Cite as

ADC: an Adaptive Data Collection Protocol with Free Addressing and Dynamic Duty-Cycling for Sensor Networks

Article

Abstract

To improve network lifetime of the battery-powered sensors for data collection, duty-cycling is commonly adopted at the link layer. A fixed duty cycle may cause a long packet delivery latency, low network capacity, and poor energy efficiency, especially in a frequently-reporting application. Moreover, considering a heterogeneous network constituted of various sensor platforms from different manufacturers, not only is node addressing with regard to address definition, management, and allocation difficult and costly, but also different addressing schemes will obstruct cross-platform communications. Based on the above considerations, this paper proposes an Adaptive Data Collection (ADC) with two features naturally and seamlessly integrated, i.e., free addressing and dynamic duty-cycling, to improve load adaptivity and energy efficiency, and to better accommodate network heterogeneity. ADC has been implemented in the Contiki Operating System. The evaluations based on a heterogeneous testbed consisting of two hardware platforms and a set of simulations in Cooja simulator consisting of three fully emulated platforms have demonstrated its practicality and efficacy.

Keywords

Sensor networks Adaptive data collection Dynamic duty-cycling Free addressing Testbed implementation 

References

  1. 1.
    Change the default MAC address of Zolertia Z1. https://goo.gl/rZ61N0. Accessed: Nov. 2016
  2. 2.
    Contiki Operating System http://www.contiki-os.org. Accessed: Nov. 2016
  3. 3.
    EXP5438 http://www.ti.com/tool/msp-exp430f5438. Accessed: Nov. 2016
  4. 4.
    Tmote Sky http://tmote-sky.blogspot.ca/. Accessed: Nov. 2016
  5. 5.
    Zolertia http://zolertia.io/. Accessed: Nov. 2016
  6. 6.
    Aby AT, Guitton A, Lafourcade P, Misson M (2015) SLACK-MAC: adaptive MAC protocol for low duty-cycle wireless sensor networks. In: Ad hoc networks, pp 69–81Google Scholar
  7. 7.
    Buettner M, Yee GV, Anderson E, Han R (2006) X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proceedings of the ACM sensys, pp 307–320Google Scholar
  8. 8.
    Burri N, von Rickenbach P, Wattenhofer R (2007) Dozer: ultra-low power data gathering in sensor networks. In: Proceeding of the ACM/IEEE IPSN, pp 450–459Google Scholar
  9. 9.
    Cao Y, Guo S, He T (2012) Robust multi-pipeline scheduling in low-duty-cycle wireless sensor networks. In: Proceedings of the IEEE INFOCOM, pp 361–369Google Scholar
  10. 10.
    Chen D, Deng J, Varshney PK (2005) Efficient data delivery over address-free wireless sensor networks. In: Proceednigs of the CISS, pp 16–18Google Scholar
  11. 11.
    van Dam T, Langendoen K (2003) An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings ACM sensys, pp 171–180Google Scholar
  12. 12.
    Dunkels A, Osterlind F, Tsiftes N, He Z (2007) Software-based on-line energy estimation for sensor nodes. In: Proceedings of the 4th workshop on embedded networked sensors, pp 28–32Google Scholar
  13. 13.
    Efthymiou C, Nikoletseas S, Rolim J (2006) Energy balanced data propagation in wireless sensor networks. Wirel Netw 12(6):691–707CrossRefGoogle Scholar
  14. 14.
    Elson J, Estrin D (2001) Random, ephemeral transaction identifiers in dynamic sensor networks. In: Proceedings of the ICDCS, pp 459–468Google Scholar
  15. 15.
    Eriksson J, Österlind F, Finne N, Tsiftes N, Dunkels A, Voigt T, Sauter R, Marrón PJ (2009) COOJA/MSPSim: interoperability testing for wireless sensor networks. In: Proceedings of the simutools, pp 27:1–27:7Google Scholar
  16. 16.
    Fang W, Liu Y, Qian D (2007) EDDS: an efficient data delivery scheme for address-free wireless sensor networks. In: Proceedings ICN, pp 1–7Google Scholar
  17. 17.
    Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P (2009) Collection tree protocol. In: Proceedings of the ACM sensys, pp 1–14Google Scholar
  18. 18.
    Jin N, Chen K, Gu T (2012) Energy balanced data collection in wireless sensor networks. In: IEEE of the ICNP, pp 1–10Google Scholar
  19. 19.
    Jobin J, Ye Z, Rawat H, Krishnamurthy S, Tripathi S (2005) A lightweight framework for source-to-sink data transfer in wireless sensor networks. In: Proceedings of the Broadnets , pp 703–713Google Scholar
  20. 20.
    Kulkarni S, Iyer A, Rosenberg C (2006) An address-light, integrated MAC and routing protocol for wireless sensor networks. IEEE/ACM Trans on Networking 14(4):793–806CrossRefGoogle Scholar
  21. 21.
    Leone P, Nikoletseas S, Rolim J (2009) Stochastic models and adaptive algorithms for energy balance in sensor networks. Theory Comput Systs 47(2):433–453Google Scholar
  22. 22.
    Li J, Kim SM, He T (2014) Circular pipelining: minimizing round-trip delay in low-duty-cycle wireless networks. In: Proceedings of the IEEE ICNP, pp 421–432Google Scholar
  23. 23.
    Lu G, Krishnamachari B, Raghavendra C (2004) An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In: Proceedings of the IEEE IPDPS , pp 224–231Google Scholar
  24. 24.
    Moeller S, Sridharan A, Krishnamachari B, Gnawali O (2010) Routing without routes: the backpressure collection protocol. In: Proceedings of the ACM/IEEE IPSN, pp 279–290Google Scholar
  25. 25.
    Mohammad M, Guo X, Chan MC (2016) Oppcast: exploiting spatial and channel diversity for robust data collection in urban environments. In: Proceedings ACM/IEEE IPSN, pp 1–12Google Scholar
  26. 26.
    Moss D, Levis P (2008) BoX-MACs: exploiting physical and link layer boundaries in low-power networking, Computer Systems Laboratory Stanford UniversityGoogle Scholar
  27. 27.
    Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-level sensor network simulation with Cooja. In: Proceedings of the IEEE conference on local computer networks , pp 641–648Google Scholar
  28. 28.
    Pan MS, Lee YH (2016) Fast convergecast for low-duty-cycled multi-channel wireless sensor networks. Ad Hoc Netw 40:1–14CrossRefGoogle Scholar
  29. 29.
    Ruzzelli AG, OHare GM, Jurdak R (2008) MERLIN: cross-layer integration of MAC and routing for low duty-cycle sensor networks. Ad Hoc Netw 6(8):1238–1257CrossRefGoogle Scholar
  30. 30.
    Tong F, Ni M, Shu L, Pan J (2013) A pipelined-forwarding, routing-integrated and effectively-identifying MAC for large-scale WSN. In: Proceedings IEEE GLOBECOM, pp 225–230Google Scholar
  31. 31.
    Tong F, Zhang R, Pan J (2016) One handshake can achieve more: an energy-efficient, practical pipelined data collection for duty-cycled sensor networks. IEEE Sensors J 16(9):3308–3322CrossRefGoogle Scholar
  32. 32.
    Wang F, Liu J (2011) Networked wireless sensor data collection: Wang F, Liu J (2011) Networked wireless sensor data collection: 13(4):673–687Google Scholar
  33. 33.
    Wang X, Wang X, Liu L, Xing G (2013) DutyCon: a dynamic duty-cycle control approach to end-to-end delay guarantees in wireless sensor networks. ACM Trans Sens Netw 9(4):1–33Google Scholar
  34. 34.
    Werner-Allen G, Lorincz K, Johnson J, Lees J, Welsh M (2006) Fidelity and yield in a volcano monitoring sensor network. In: Proceedings of the USENIX OSDI, pp 381–396Google Scholar
  35. 35.
    Wong KJ, Arvind DK (2006) SpeckMAC: low-power decentralised MAC protocols for low data rate transmissions in specknets. In: Proceedings of the ACM REALMAN, pp 71–78Google Scholar
  36. 36.
    Wu Y, Li XY, Liu Y, Lou W (2010) Energy-efficient wakeup scheduling for data collection and aggregation. IEEE Trans Parallel Distrib Systs 21(2):275–287Google Scholar
  37. 37.
    Wu Y, Liu KS, Stankovic JA, He T, Lin S (2016) Efficient multichannel communications in wireless sensor networks. ACM Trans Sens Netw 12(1):3:1–3:23Google Scholar
  38. 38.
    Xu K, Gerla M, Bae S (2002) How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In: Proceedings of the IEEE GLOBECOM, pp 72–76Google Scholar
  39. 39.
    Ye W, Heidemann J, Estrin D (2004) Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans Networking 12(3):493–506Google Scholar
  40. 40.
    Zhang J, Li Z, Xia F, Tang S, Shen X, Zhao B (2014) Cooperative scheduling for adaptive duty cycling in asynchronous sensor networks. Comput J 1–13Google Scholar
  41. 41.
    Zhang T, Wang D, Cao J, Ni YQ, Chen LJ, Chen D (2012) Elevator-assisted sensor data collection for structural health monitoring. IEEE Trans Mob Comput 11(10):1555–1568Google Scholar
  42. 42.
    Zheng T, Radhakrishnan S, Sarangan V (2005) PMAC: an adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the IEEE IPDPS, pp 65–72Google Scholar
  43. 43.
    The implementation code of ADC and PDC in the Contiki Operating System. https://github.com/fei-tong/PDC-ADC-in-Contiki. Accessed: Nov. 2016

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of VictoriaVictoriaCanada

Personalised recommendations