Mobile Networks and Applications

, Volume 22, Issue 5, pp 785–795 | Cite as

Joint Atomic Norm Based Estimation of Sparse Time Dispersive SIMO Channels with Common Support in Pilot Aided OFDM Systems

  • Slavche Pejoski
  • Venceslav Kafedziski


We consider the problem of estimation of sparse time dispersive Single Input Multiple Output (SIMO) channels, using a single transmit and multiple receive antennas in pilot aided OFDM systems. The channels we consider are with a continuous time delays and sparse, and we assume a common support of the channel coefficients of the SIMO channels associated with different antennas, resulting from the same scatterer. To exploit these properties, we propose a new channel estimation algorithm based on the atomic norm minimization for the Multiple Measurement Vector (MMV) model. A joint estimation of the delays corresponding to the same scatterer is obtained using the combination of the atomic norm regularized minimization for the MMV model and the MUSIC method. Then, based on the availability of the channel correlation information, the path gains are estimated using the LS or the MMSE method. Additionally, we derive a theoretical estimate of the channel estimate Mean Square Error for the asymptotically increasing number of receive antennas. To evaluate the proposed algorithm, we compare its performance with other state of the art algorithms.


Channel estimation Joint atomic norm minimization SIMO channel Pilot aided OFDM 


  1. 1.
    Holma H, Antti T (2004) WCDMA for UMTS: Radio Access for Third Generation Mobile Communications (3ed). Wiley, NY, USAGoogle Scholar
  2. 2.
    Sung Y, Lim Y, Tong L, Van der Veen AJ (2009) Signal processing advances for 3G WCDMA: From RAKE receivers to blind techniques. IEEE Commun Mag 47(1):48–54CrossRefGoogle Scholar
  3. 3.
    Dahlman E, Parkvall S, SkoldHolma J (2014) 4G: LTE/LTE-advanced for Mobile Broadband (2ed). Academic Press, Oxford, United KingdomGoogle Scholar
  4. 4.
    Zhao Z, Cheng X, Wen M, Jiao B, Wang CX (2013) Channel Estimation Schemes for IEEE 802.11p Standard. IEEE Intell Trans Syst Mag 5(4):38–49CrossRefGoogle Scholar
  5. 5.
    Weng F, Yin C, Luo T (2010) Channel estimation for the downlink of 3GPP-LTE systems. In: 2Nd IEEE International conference on Network Infrastructure and Digital Content, vol 2010, Beijing, pp 1042–1046Google Scholar
  6. 6.
    Simko M, Wu D, Mehlfuehrer C, Eilert J, Liu D (2011) Implementation aspects of channel estimation for 3GPP LTE terminals. In: Wireless Conference 2011 - Sustainable Wireless Technologies (European Wireless), 11th European, Vienna, Austria, pp 1– 5Google Scholar
  7. 7.
    Ahmadi S (2009) An overview of next-generation mobile WiMAX technology. IEEE Commun Mag 47(6):84–98CrossRefGoogle Scholar
  8. 8.
    Perahia E (2008) IEEE 802.11N development: history, process, and technology. IEEE Commun Mag 46 (7):48–55CrossRefGoogle Scholar
  9. 9.
    Donoho LD (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Berger RC, Wang Z, Huang J, Zhou S (2010) Application of compressive sensing to sparse channel estimation. IEEE Commun Mag 48(11):164–174CrossRefGoogle Scholar
  12. 12.
    Taubock G, Hlawatsch F, Eiwen D, Rauhut H (2010) Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and Sparsity-Enhancing processing. IEEE J Sel Top Sig Process 4 (2):255–271CrossRefGoogle Scholar
  13. 13.
    Cheng P, Chen Z, Rui Y, Guo YJ, Gui L, Tao M, Zhang QT (2013) Channel estimation for OFDM systems over doubly selective channels: a distributed compressive sensing based approach. IEEE Trans Comm 61(10):4173–4185CrossRefGoogle Scholar
  14. 14.
    Hu D, Wang X, He L (2013) A new sparse channel estimation and tracking method for Time-Varying OFDM systems. IEEE Tran Veh Tech 62(9):4848–4653Google Scholar
  15. 15.
    Qi C, Yue G, Wu L, Nallanathan A (2014) Pilot design for sparse channel estimation in OFDM-based cognitive radio systems. IEEE Trans Veh Tech 63(2):982–987CrossRefGoogle Scholar
  16. 16.
    Pejoski S, Kafedziski V (2015) Asymptotic capacity lower bound for an OFDM system with lasso compressed sensing channel estimation for Bernoulli-Gaussian channel. IEEE Commun Lett 19(3):379–382CrossRefGoogle Scholar
  17. 17.
    Candès E, Fernandez-Granda C (2014) Towards a Mathematical Theory of Super-resolution. Commun Pure Appl Math 67(6):906–956MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Candès E, Fernandez-Granda C (2013) Super-Resolution from noisy data. J Fourier Anal Appl 19 (6):1229–1254MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tang G, Bhaskar BN, Shah P, Recht B (2013) Compressed sensing off the grid. IEEE Tran Inf Theory 59(11):7465–7490MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Bhaskar BN, Tang G, Recht B (2013) Atomic norm denoising with applications to line spectral estimation. IEEE Trans Sig Process 61(23):5987–5999MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yang Z, Xie L (2015) On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans Sig Process 63(12):3139–3153MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pejoski S, Kafedziski V (2015) Estimation of sparse time dispersive channels in pilot aided OFDM using atomic norm. IEEE Wirel Commun Lett 4(4):397–400CrossRefGoogle Scholar
  23. 23.
    Barbotin Y, Hormati A, Rangan S, Vetterli M (2012) Estimation of sparse MIMO channels with common support. IEEE Trans Commun 60(12):3705–3716CrossRefGoogle Scholar
  24. 24.
    Barbotin Y, Vetterli M (2012) Fast and robust parametric estimation of jointly sparse channels. IEEE J Emerg Sel Top Circ Syst 2(3):402–412CrossRefGoogle Scholar
  25. 25.
    Yang Z, Xie L (2014) Exact joint sparse frequency recovery via optimization methods. arXiv:1405.6585
  26. 26.
    Li Y, Chi Y (2014) Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. arXiv:1408.2242
  27. 27.
    Pejoski S (2015) Estimation of sparse time dispersive SIMO channels with common support in pilot aided OFDM systems using atomic norm. In: 1st EAI International Conference on Future access enablers of ubiquitous and intelligent infrastructures FABULOUS, OhridGoogle Scholar
  28. 28.
    Simeone O, Bar-Ness Y, Spagnolini U (2004) Pilot-Based Channel estimation for OFDM systems by tracking the Delay-Subspace. IEEE Trans Wirel Comm 3(1):315–325CrossRefGoogle Scholar
  29. 29.
    Barbotin Y (2014) Parametric estimation of sparse channels: Theory and applications. Dissertation, EPFLGoogle Scholar
  30. 30.
    Grant M, Boyd S (2013) CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta,

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Information TechnologiesUniversity “Ss. Cyril and Methodious” SkopjeSkopjeRepublic of Macedonia

Personalised recommendations