Mobile Networks and Applications

, Volume 16, Issue 2, pp 149–170 | Cite as

Robust Image Transmission Over Wireless Sensor Networks

  • Pinar Sarisaray BolukEmail author
  • Sebnem Baydere
  • A. Emre Harmanci


Robust image and video communications have become more imperative due to the ubiquitous proliferation of multimedia applications over wireless sensor networks. In this work, the transmission distortions on the image data induced by both channel and instant node failures for Wireless Sensor Networks (WSN) are considered. The effect of two techniques and their integration with multipath transmission are investigated to compensate the multimedia distortions at the expense of incurring additional energy consumption and/or wasting bandwidth resources. First technique is watermarking based error concealment utilizing discrete wavelet transform for embedding downsized replicas of original image into itself. The other is conventional Reed–Solomon (RS) coding utilizing additional information bits to correct bit/symbol errors. Performance results obtained from extensive simulations utilizing a communication and energy model applicable to WSN show that error concealment (EC) integrated schemes, especially EC with multipath fusion (ECMF), are more promising to compensate losses than RS-coding-integrated and pure multipath transmission techniques in WSN.


wireless transmission error concealment image transmission analysis energy consumption WSN wireless sensor networks 


  1. 1.
    Akyildiz I, Melodia T, Chowdhury K (2007) A survey on wireless multimedia sensor networks. Comput Networks 51(4):921–960CrossRefGoogle Scholar
  2. 2.
    Akyildiz I, Melodia T, Chowdhury K (2008) Wireless multimedia sensor networks: applications and testbeds. Proc IEEE 96(10):1588–1605CrossRefGoogle Scholar
  3. 3.
    Cerpa A, Busek N, Estrin D (2003) SCALE: a tool for simple connectivity assessment in lossy environments. CENS, UCLA, Tech. RepGoogle Scholar
  4. 4.
    Chiasserini CF, Magli E (2002) Energy consumption and image quality in wireless video-surveillance networks. In: The 13th IEEE international symposium on personal, indoor and mobile radio communications, 2002, vol 5, pp 2357–2361Google Scholar
  5. 5.
    Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG2000 still image coding system: an overview. IEEE Trans Consum Electron 46(4):1103–1127CrossRefGoogle Scholar
  6. 6.
    Culurciello E, Andreou A (2006) CMOS image sensors for sensor networks. Analog Integr Circuits Signal Process 49(1):39–51CrossRefGoogle Scholar
  7. 7.
    Dai R, Akyildiz IF (2009) A spatial correlation model for visual information in wireless multimedia sensor networks. Trans Multi 11(6):1148–1159CrossRefGoogle Scholar
  8. 8.
    Damera-Venkata N, Kite T, Geisler W, Evans B, Bovik A (2000) Image quality assessment based on a degradation model. IEEE Trans Image Process 9(4):636–650CrossRefGoogle Scholar
  9. 9.
    Felemban E, Ekici E (2006) MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks. IEEE Trans Image Process 5(6):738–754. doi: 10.1109/TMC.2006.79 Google Scholar
  10. 10.
    Ferrigno L, Marano S, Paciello V, Pietrosanto A (2005) Balancing computational and transmission power consumption in wireless image sensor networks. In: IEEE VECIMS, p 6Google Scholar
  11. 11.
    Francillon A, Castelluccia C (2007) TinyRNG: a cryptographic random number generator for wireless sensors network nodes. In: Modeling and optimization in mobile, ad hoc and wireless networks and workshops, 2007. WiOpt 2007. 5th International Symposium on. Citeseer, pp 1–7Google Scholar
  12. 12.
    Girod B (1993) What’s wrong with mean-squared error? In: Digital images and human vision. MIT Press, pp 207–220Google Scholar
  13. 13.
    Gur G, Altug Y, Anarim E, Alagoz F (2007) Image error concealment using watermarking with subbands for wireless channels. IEEE Commun Lett 11(2):179–181CrossRefGoogle Scholar
  14. 14.
    Hengstler S, Aghajan H (2006) Application development in vision-enabled wireless sensor networks. In: Proceedings of the international conference on systems and networks communication. IEEE Computer Society, p 30Google Scholar
  15. 15.
    Kundur D, Hatzinakos D (2004) Toward robust logo watermarking using multiresolution image fusion principles. IEEE Trans Multimedia 6(1):185–198CrossRefGoogle Scholar
  16. 16.
    Lee D, Dey S (2002) Adaptive and energy efficient wavelet image compression for mobile multimedia data services. In: IEEE international conference on communications, 2002. ICC 2002, pp 2484–2490Google Scholar
  17. 17.
    Lee D, Kim H, Rahimi M, Estrin D, Villasenor J (2009) Energy-efficient image compression for resource-constrained platforms. IEEE Trans Image Process 18(9):2100–2113CrossRefGoogle Scholar
  18. 18.
    Lee H, Tessens L, Morbee M, Aghajan H, Philips W (2008) Sub-optimal camera selection in practical vision networks through shape approximation. In: 10th ACIVS. Springer-Verlag, p 277Google Scholar
  19. 19.
    Lin S, Costello D (1983) Error control coding: fundamentals and applications. Prentice-hall Englewood Cliffs, NJGoogle Scholar
  20. 20.
    Lu Q, Luo W, Wang J, Chen B (2008) Low-complexity and energy efficient image compression scheme for wireless sensor networks. Comput Networks 52(13):2594–2603. doi: 10.1016/j.comnet.2008.05.006 zbMATHCrossRefGoogle Scholar
  21. 21.
    Mao S, Lin S, Wang Y, Panwar S, Li Y (2005) Multipath video transport over ad hoc networks. IEEE Wirel Commun 12(4):42–49CrossRefGoogle Scholar
  22. 22.
    Misra S, Reisslein M, Xue G (2008) A survey of multimedia streaming in wireless sensor networks. IEEE Commun Surv Tutor 10(4):18–39CrossRefGoogle Scholar
  23. 23.
    Pearlman W (1997) An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT). IEEE Computer Soc. Press. doi: 10.1109/DCC.1997.582048 Google Scholar
  24. 24.
    Pekhteryev G, Sahinoglu Z, Orlik P, Bhatti G (2005) Image transmission over IEEE 802.15. 4 and ZigBee networks. In: IEEE ISCAS, pp 3539–3542Google Scholar
  25. 25.
    Politis I, Tsagkaropoulos M, Dagiuklas T, Kotsopoulos S (2008) Power efficient video multipath transmission over wireless multimedia sensor networks. Mob Netw Appl 13(3–4):274–284. doi: 10.1007/s11036-008-0061-5 Google Scholar
  26. 26.
    Rahimi M, Baer R, Iroezi O, Garcia J, Warrior J, Estrin D, Srivastava M (2005) Cyclops: in situ image sensing and interpretation in wireless sensor networks. In: Proceedings of the 3rd international conference on embedded networked sensor systems. ACM, p 204Google Scholar
  27. 27.
    Ramac L, Varshney P (2000) A wavelet domain diversity method for transmission of images over wireless channels. IEEE J Sel Areas Commun 18(6):891CrossRefGoogle Scholar
  28. 28.
    Rappaport T et al (2002) Wireless communications: principles and practice. Prentice Hall PTR, New JerseyGoogle Scholar
  29. 29.
    Reijers N, Halkes G, Langendoen K (2004) Link layer measurements in sensor networks. In: 2004 IEEE international conference on mobile ad-hoc and sensor systems, pp 224–234Google Scholar
  30. 30.
    Rowe A, Goode A, Goel D, Nourbakhsh I (2007) CMUcam3: an open programmable embedded vision sensor. Tech. Rep. CMU-RI-TR-07-13, Robotics Institute, Carnegie Mellon University.
  31. 31.
    Sarisaray P, Gur G, Baydere S, Harmanc E (2007) Performance comparison of error compensation techniques with multipath transmission in wireless multimedia sensor networks. In: 15th MASCOTS, pp 73–86Google Scholar
  32. 32.
    Sinha A, Chandrakasan A (2001) Joule track, “a web based tool for software energy profiling,” proceedings of the 38th design automation. In: Conference, DAC, pp 220–225Google Scholar
  33. 33.
    Soro S, Heinzelman W (2009) A survey of visual sensor networks. Adv Multimedia 2009:1–21CrossRefGoogle Scholar
  34. 34.
    Srinivasan K, Dutta P, Tavakoli A, Levis P (2010) An empirical study of low-power wireless. ACM Trans Sensor Networks (TOSN) 6(2):1–49CrossRefGoogle Scholar
  35. 35.
    Stanislava S, Wendi H (2009) A survey of visual sensor networks. Adv Multimedia 2009:1–21Google Scholar
  36. 36.
    Suh C, Mir Z, Ko Y (2008) Design and implementation of enhanced IEEE 802.15.4 for supporting multimedia service in wireless sensor networks. Comput Networks 52(13):2568–2581. doi: 10.1016/j.comnet.2008.03.011 CrossRefGoogle Scholar
  37. 37.
    Wallace G (1992) The JPEG still picture compression standard. IEEE Trans Consum Electron 38(1):18–34CrossRefGoogle Scholar
  38. 38.
    Wang J, Ji L (2001) A region and data hiding based error concealment scheme for images. IEEE Trans Consum Electron 47(2):257–262CrossRefGoogle Scholar
  39. 39.
    Wang Z, Wu G, Sheikh HR, Simoncelli EP, Yang EH, Bovik AC (2006) Quality-aware images. In: IEEE transactions on image processing: a publication of the IEEE signal processing society, vol 15(6), pp 1680–1689Google Scholar
  40. 40.
    Wu H, Abouzeid A (2004) Power aware image transmission in energy constrained wireless networks. In: iscc. IEEE, pp 202–207Google Scholar
  41. 41.
    Wu H, Abouzeid A (2006) Error resilient image transport in wireless sensor networks. Comput Networks 50(15):2873–2887. doi: 10.1016/j.comnet.2005.09.039 zbMATHCrossRefGoogle Scholar
  42. 42.
    Wu M, Chen CW (2007)Collaborative image coding and transmission over wireless sensor networks. EURASIP J Adv Signal Process 2007:1–10. doi: 10.1155/2007/70481 CrossRefGoogle Scholar
  43. 43.
    Zorzi M (1998) Performance of FEC and ARQ error control in bursty channels under delay constraints. In: IEEE vehicular technology conference, vol 48. Citeseer, pp 1390–1394Google Scholar
  44. 44.
    Zuniga M, Krishnamachari B (2007) An analysis of unreliability and asymmetry in low-power wireless links. ACM Trans Sensor Networks 3(2):1–30Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pinar Sarisaray Boluk
    • 1
    • 2
    Email author
  • Sebnem Baydere
    • 3
  • A. Emre Harmanci
    • 2
  1. 1.Bahcesehir UniversityIstanbulTurkey
  2. 2.Istanbul Technical UniversityIstanbulTurkey
  3. 3.Yeditepe UniversityIstanbulTurkey

Personalised recommendations