Skip to main content
Log in

Body Area Networks: A Survey

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript


Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. There are some variations that include the word “Wireless” and/or the word “Sensor”. Therefore, WBAN and WBASN are widely accepted too.


  1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Networks 38(4):393–422

    Article  Google Scholar 

  2. Arvind DK, Bates A (2008) The speckled golfer. In: Proceedings of BodyNets 2008. Tempe, USA

  3. Baker CR, Armijo K, Belka S, Benhabib M, Bhargava V et al (2007) Wireless sensor networks for home health care. In: International conference on advanced information networking and applications workshops, AINAW’07, pp 832–837

  4. Barth A, Wilson S, Hanson M, Powell H, Unluer D, Lach J (2008) Body-coupled communication for body sensor networks. The 3rd international conference on body area networks (BodyNets). Tempe, Arizona

  5. Bluecore. Available at:

  6. Body Sensor Networks. Available at:

  7. Cacioppo JT (2003) Introduction: emotion and health. In: Handbook of affective stress, 1st edn. Oxford University Press

  8. Cao H, Chow C, Chan H, Leung V (2009) Enabling technologies for wireless body area networks: a survey and outlook. IEEE Wirel Commun Mag 47(12):84–93

    Article  Google Scholar 

  9. Cao H, Gonzalez-Valenzuela S, Leung V (2010) Employing IEEE 802.15.4 for quality of service provisioning in wireless body area sensor networks. In: Proc. IEEE advanced information networking and application, AINA 2010. Perth, Australia

  10. Cobb W (1983) Recommendation for the practice of clinical neurophysiology. Elsevier, Amsterdam

    Google Scholar 

  11. Corchado J, Bajo J, Tapia D, Abraham A (2010) Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare. IEEE Trans Inf Technol Biomed 14(2):234–240

    Article  Google Scholar 

  12. Curtis D, Shih, E, Waterman J, Guttag J, Bailey J et al (2008) Physiological signal monitoring in the waiting areas of an emergency room. In: Proceedings of BodyNets 2008. Tempe, Arizona, USA

  13. Dam T, Langendoen K (2003) An adaptive energy-efficient mac protocol for wireless sensor networks. In: Proceedings of the first ACM SenSys conference, pp 171–180. Los Angeles, CA, USA

  14. Dara C, Monetta L, Pell MD (2008) Vocal emotion processing in Parkinson’s disease: reduced sensitivity to negative emotions. Brain Res 1188:100–111

    Article  Google Scholar 

  15. El-Nasr M, Vasilakos A (2008) DigitalBeing—using the environment as an expressive medium for dance. Inf Sci 178:663–678

    Article  Google Scholar 

  16. Farella E, Pieracci A, Benini L, Rocchi L, Acquaviva A (2008) Interfacing human and computer with wireless body area sensor networks: the WiMoCA solution. Multimedia Tools and Applications 38(3):337–363

    Article  Google Scholar 

  17. Felemban E, Lee C-G, Ekici E (2006) MMSPEED: multipath MultiiSPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks. IEEE Trans Mob Comput 5(6)738–754

    Article  Google Scholar 

  18. Fleury A, Vacher M, Noury N (2010) SVM-based multi-modal classification of activities of daily living in health smart homes: sensors, algorithms and first experimental results. IEEE Trans Inf Technol Biomed 14(2):274–283

    Article  Google Scholar 

  19. Gao T, Massey T, Selavo L, Crawford D, Chen B, Lorincz K, Shnayder V, Hauenstein L, Dabiri F, Jeng J, Chanmugam A, White D, Sarrafzadeh M, Welsh M (2007) The advanced health and disaster aid network: a light-weight wireless medical system for triage. IEEE Trans Biomed Circuits Syst 1(3):203–216

    Article  Google Scholar 

  20. Ghasemzadeh H, Jafari R, Prabhakaran B (2010) A body sensor network with electromyogram and inertial sensors: multi-modal interpretation of muscular activities. IEEE Trans Inf Technol Biomed 14(2):198–206

    Article  Google Scholar 

  21. Gu H, Ji Q (2004) An automated face reader for fatigue detection. In: FGR, pp 111–116

  22. Hall PS, Hao Y (2006) Antennas and propagation for body-centric wireless communications. Artech House Publishers, Boston

    Google Scholar 

  23. Healey JA, Picard RW (2005) Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transp Syst 6(2):156–166

    Article  Google Scholar 

  24. Hoiydi A, Decotignie J, Enz C, Roux E (2003) WiseMAC: an ultra low power MAC protocol for the wisenet wireless sensor networks. In: Proceedings of the first ACM SenSys Conference. Los Angeles, CA

  25. Hoyt, R.W (0000) SPARNET—Spartan sensor network to improve medical and situational awareness of foot soldiers during field training. Available at:

  26. IEEE 802.15 Task Group 6 (BSN). Available at:

  27. Jantunen I, Laine H, Huuskonen P, Trossen D, Ermolov V (2004) Smart sensor architecture for mobile-terminal-centric ambient intelligence. Sens Actuators A Phys 142(1):352–360

    Article  Google Scholar 

  28. Jiang S, Cao Y, Lyengar S, Kuryloski P, Jafari R, Xue Y, Bajcsy R, Wicker S (2008) CareNet: an integrated wireless sensor networking environment for remote healthcare. In: Proc. of international conference on body area networks. Tempe, Arizona

  29. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834):83–86

    Article  MathSciNet  Google Scholar 

  30. Lai C, Huang Y, Park J, Chao H (2010) Adaptive body posture analysis using collaborative multi-sensors for elderly falling detection. IEEE Intell Syst 25(2):20–30

    Article  Google Scholar 

  31. Latr B, Braem B, Moerman I, Blondia C, Reusens E, Joseph W, Demeester P (2007) A low-delay protocol for multihop wireless body area networks. In: Proceedings of mobiquitous. Philadelphia, PA

  32. Li H, Tan J (2005) An ultra-low-power medium access control protocol for body sensor network. In: Proceedings of IEEE-EMBS. Reading, UK

  33. Li H, Tan J (2007) Heartbeat driven medium access control for body sensor networks. In: Proceedings of ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments. San Juan, Puerto Rico

  34. Milenkovic A, Otto C, Jovanov E (2006) Wireless sensor networks for personal health monitoring: issues and an implementation. Comput Commun 29(13–14):2521–2533

    Article  Google Scholar 

  35. Omeni O (2008) A perspective of the BSN MAC. Internet draft, January 11, 2008

  36. Patel M, Wang J (2010) Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel Commun Mag 17(1):80–88

    Article  Google Scholar 

  37. Pentland A (2004) Healthwear: medical technology becomes wearable. Computer 37(5):42–49

    Article  Google Scholar 

  38. Picard RW (2001) Affective medicine: technology with emotional intelligence. In: Bushko RG (ed) Future of health technology. OIS

  39. Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor networks. In: Proceedings of the 2nd ACM SenSys conference, pp 95–107. Baltimore, MD, USA

  40. Rajendran V, Obraczka K, Garcia-Luna-Aceves J (2003) Energyefficient, collision-free medium access control for wireless sensor networks. In: Proceedings of the first ACM SenSys conference, pp 181–193. Los Angeles, CA, USA

  41. RFID. Available at:

  42. Ruiz JA, Shimamoto S (2006) Novel communication services based on human body and environment interaction: applications inside trains and applications for handicapped people. In: Proc. of the IEEE wireless communications and networking conference, WCNC 2006. Las Vegas, Nevada

  43. Saeed A, Faezipour M, Nourani M, Tamil LS (2009) Plug-and-play sensor node for body area networks. In: Proceedings of the IEEE-NIH life science systems and applications workshop, (LISSA’09), pp 104–107. Bethesda, Maryland, USA

  44. Schwiebert L, Gupta SKS, Weinmann J (2001) Research challenges in wireless networks of biomedical sensors. In: Proc. ACM Mobicom’01. Rome, Italy

  45. Sensor Node Wiki. Available at:

  46. Sheltami T, Mahmoud A, Abu-Amara M (2006) Warning and monitoring medical system using sensor networks. In: The Saudi 18th national computer conference (NCC18), pp 63–68. Riyadh, Saudi Arabia

  47. Shnayder V, Chen B, Lorincz K, Fulford-Jones TRF, Welsh M (2005) Sensor networks for medical care. Harvard University Technical Report TR-08-05

  48. Smeaton AF, Diamond D et al (2008) Aggregating multiple body sensor for analysis in sports. In: International workshop on wearable micro and nanosystems for personalised health—pHealth. Valencia, Spain

  49. Takeda K, Hansen JH, L, Erdogan H, Abut H (2009) In-vehicle corpus and signal processing for driver behavior. Springer

  50. Takizawa K, Aoyagi T, Kohno R (2009) Channel modeling and performance evaluation of uwb-based wireless body area networks. In: Proc. of the IEEE international conference on communications, ICC 2009. Dresden, Germany

  51. Taleb T, Bottazzi D, Nasser N (2010) A novel middleware solution to improve ubiquitous healthcare systems aided by affective information. IEEE Trans Inf Technol Biomed 14(2):335–349

    Article  Google Scholar 

  52. Taparugssanagorn A, Rabbachin A, Hamalainen M, Saloranta J, Iinatti J (2008) A review of channel modelling for wireless body area network in wireless medical communications. In: The 11th international symposium on wireless personal multimedia communications. Saariselka, Finland

  53. TinyOS for wireless embedded sensor networks. Available at:

  54. US Bureau of the Census (2000) Population projections of the United States by age, sex, race and Hispanic origin: 1995–2050, Current Population Reports, P25-1130

  55. Warren S, Jovanov E (2006) The need for rules of engagement applied to wireless body area networks. In: Proc. of the IEEE consumer communications and networking conference, CCNC 2006. Las Vegas, Nevada

  56. WLAN Interference to IEEE802.15.4. Available at: Retrieved on 2007-11-22

  57. Wood A, Virone G, Doan T, Cao Q, Selavo L, Wu Y, Fang L, He Z, Lin S, Stankovic J (2006) ALARM-NET: wireless sensor networks for assisted-living and residential monitoring. Technical Report CS-2006-11, Department of Computer Science, University of Virginia

  58. Xu PJ, Zhang H, Tao XM (2008) Textile-structured electrodes for electrocardiogram. Text Prog 40(4):183–213

    Article  Google Scholar 

  59. Yazdandoost K, Sayrafian-Pour K (2009) Channel model for body area network (BSN). Doc. # IEEE P802.15-08-0780-06-0006. Available online at

  60. Ye W, Heidemann J (2005) SCP-MAC: reaching ultra-low duty cycles (poster). In: IEEE SECON’05. Santa Clara, CA, USA

  61. Ye W, Heidemann J, Estrin D (2004) Medium access control with coordinated, adaptive sleeping for wireless sensor networks. IEEE/ACM Trans Netw 3(12):493–506

    Article  Google Scholar 

  62. Younis M, Akkaya K et al (2004) On handling QoS traffic in wireless sensor networks. In: Proceedings of the 37th annual Hawaii international conference on system sciences. Hawaii

  63. Yu J-Y, Liao W-C, Lee C-Y (2006) A MT-CDMA based wireless body area network for ubiquitous healthcare monitoring. In: Proc. IEEE biomedical circuits and systems conference, BioCAS 2006, pp 98–101

  64. Zhang YP, Bin L, Qi C (2007) Characterization of on-human-body UWB radio propagation channel. Microw Opt Technol Lett 49(6):1365–1371

    Article  Google Scholar 

  65. Zhang Z, Zhang JS (2006) Driver fatigue detection based intelligent vehicle control. In: Proceedings of the 18th IEEE international conference on pattern recognition, ICPR’06, pp 1262–1265. Washington, DC

  66. Zhen B, Patel M, Lee S, Won E, Astrin A (2008) TG6 technical requirements document (TRD) IEEE P802.15-08-0644-09-0006.

  67. Zhou G, Liu J, Wan C, Yarvis M, Stankovic J (2008) BodyQoS: Adaptive and radio-agnostic QoS for body sensor networks. In: Proceedings of IEEE INFOCOM. Phoenix, USA

  68. ZigBee Specification. Available at: Retrieved on 2008-03-18

  69. Zigbee Standard. Available at:

Download references


This work was supported in part by the Canadian Natural Sciences and Engineering Research Council through grant STPGP 365208.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Athanasios Vasilakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Gonzalez, S., Vasilakos, A. et al. Body Area Networks: A Survey. Mobile Netw Appl 16, 171–193 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI: