Skip to main content
Log in

Expression profile of viability and stress response genes as a result of resveratrol supplementation in vitrified and in vitro produced cattle embryos

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Resveratrol, a potent antioxidant, is known to induce the up-regulation of the internal antioxidant system. Therefore, it holds promise as a method to mitigate cryopreservation-induced injuries in bovine oocytes and embryos. This study aimed to (i) assess the enhancement in the quality of in vitro produced bovine embryos following resveratrol supplementation and (ii) monitor changes in the expression of genes associated with oxidative stress (GPX4, SOD, CPT2, NFE2L2), mitochondrial function (ATP5ME), endoplasmic reticulum function (ATF6), and embryo quality (OCT4, DNMT1, CASP3, ELOVL5).

Methods and results

Three groups of in vitro bovine embryos were cultured with varying concentrations of resveratrol (0.01, 0.001, and 0.0001 µM), with a fourth group serving as a control. Following the vitrification process, embryos were categorized as either good or poor quality. Blastocysts were then preserved at − 80 °C for RNA isolation, followed by qRT-PCR analysis of selected genes. The low concentrations of resveratrol (0.001 µM, P < 0.05 and 0.0001 µM, P < 0.01) significantly improved the blastocyst rate compared to the control group. Moreover, the proportion of good quality vitrified embryos increased significantly (P < 0.05) in the groups treated with 0.001 and 0.0001 µM resveratrol compared to the control group. Analysis of gene expression showed a significant increase in OCT4 and DNMT1 transcripts in both good and poor-quality embryos treated with resveratrol compared to untreated embryos. Additionally, CASP3 expression was decreased in treated good embryos compared to control embryos. Furthermore, ELOVL5 and ATF6 transcripts were down-regulated in treated good embryos compared to the control group. Regarding antioxidant-related genes, GPX4, SOD, and CPT2 transcripts increased in the treated embryos, while NFE2L2 mRNA decreased in treated good embryos compared to the control group.

Conclusions

Resveratrol supplementation at low concentrations effectively mitigated oxidative stress and enhanced the cryotolerance of embryos by modulating the expression of genes involved in oxidative stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP (2003) Oocytes and embryos quality: effect of origin, culture conditions and gene expression patterns. Reprod Dom Anim 38:259–267. https://doi.org/10.1046/j.1439-0531.2003.00437.x

    Article  CAS  Google Scholar 

  2. Khazaei M, Aghaz F (2017) Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. Int J Fertil Steril 11:63–70. https://doi.org/10.22074/ijfs.2017.4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gutnisky C, Morado S, Dalvit GC, Tompson JG, Cetica PD (2013) Glycolytic pathway activity: effect on IVM and oxidative metabolism of bovine oocytes. Reprod Fertil Dev 25:1026–1035. https://doi.org/10.1071/RD12193

    Article  CAS  PubMed  Google Scholar 

  4. Sovernigo TC, Adona PR, Monzani PS, Guemra S, Barros F, Lopes FG, Leal C (2017) Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Domest Anim 52:561–569. https://doi.org/10.1111/rda.12946

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Zhu X, Liang X, Xu H, Liao Y, Lu K, Lu S (2019) Effects of resveratrol on in vitro maturation of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer. Reprod Domest Anim 54:1195–1205. https://doi.org/10.1111/rda.13493

    Article  CAS  PubMed  Google Scholar 

  6. Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S, Courot E (2012) Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J Biomed Biotechnol 579–589. https://doi.org/10.1155/2012/579089

  7. Tatone C, Di Emidio G, Vitti M, Di Carlo M, Santini S Jr, D’Alessandro AM, Falone S, Amicarelli F (2015) Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev 659–687. https://doi.org/10.1155/2015/659687

  8. Zabihi A, Shabankareh HK, Hajarian H, Foroutanifar S (2019) Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domest Anim Endocrinol 68:25–31. https://doi.org/10.1016/j.domaniend.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  9. Budani MC, Tiboni GM (2020) Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants 9:612. https://doi.org/10.3390/antiox9070612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kabeer SW, Riaz A, Rahman AU, Shahbakht RM, Anjum A, Khera HRA, Haider A, Riaz F, Yasin R, Yaseen M, Saleem M, Bano N, Raza MA, Khan JA (2024) Effect of different concentrations of resveratrol on nuclear maturation and in-vitro development competence of oocytes of Nili Ravi Buffalo. Trop Anim Health Prod 56:105. https://doi.org/10.1007/s11250-024-03952-w

    Article  PubMed  Google Scholar 

  11. Iwata H (2021) Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod Med Biol 20:419–426. https://doi.org/10.1002/rmb2.12401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Côté I, Vigneault C, Laflamme I, Laquerre J, Fournier É, Gilbert I, Scantland S, Gagne D, Blondin P, Robert C (2011) Comprehensive cross production system assessment of the impact of in vitro microenvironment on the expression of messengers and long noncoding RNAs in the bovine blastocyst. Reproduction 142:99–112. https://doi.org/10.1530/REP-10-0477

    Article  CAS  PubMed  Google Scholar 

  13. Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629. https://doi.org/10.1016/j.ydbio.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  14. Lodde V, Modina SC, Franciosi F, Zuccari E, Tessaro I, Luciano AM (2009) Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow. Eur J Histochem 53:e24. https://doi.org/10.4081/ejh.2009.e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei S, Shen X, Gong Z, Deng Y, Lai L, Liang H (2017) FSHR and LHR expression and signaling as well as maturation and apoptosis of cumulus oocyte complexes following treatment with FSH receptor binding inhibitor in sheep. Cell Physiol Biochem 43:660–666. https://doi.org/10.1159/000480650

    Article  CAS  PubMed  Google Scholar 

  16. Matwee C, Betts DH, King WA (2000) Apoptosis in the early bovine embryo. Zygote 8:57–68. https://doi.org/10.1017/S0967199400000836

    Article  CAS  PubMed  Google Scholar 

  17. Ito J, Shirasuna K, Kuwayama T, Iwata H (2020) Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal vesicle stage vitrified-warmed oocytes. Cryobiology 93:37–43. https://doi.org/10.1016/j.cryobiol.2020.02.014

    Article  CAS  PubMed  Google Scholar 

  18. El Sheikh M, Mesalam A, Mesalam AA, Idrees M, Lim Lee K, Kong K (2019) Melatonin abrogates the anti-developmental effect of the AKT inhibitor SH6 in bovine oocytes and embryos. Int J Mol Sci 20:1–22. https://doi.org/10.3390/ijms20122956

    Article  CAS  Google Scholar 

  19. Nagano M (2019) Acquisition of developmental competence and in vitro growth culture of bovine oocytes. J Reprod Dev 65:195–201. https://doi.org/10.1262/jrd.2019-022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Annes K, Müller DB, Vilela JAP, Valente RS, Caetano DP, Cibin FWS, Milazzotto MP, Mesquita FS, Belaz KRA, Eberlin MN, Sudano MJ (2018) Influence of follicle size on bovine oocyte lipid composition, follicular metabolic and stress markers, embryo development and blastocyst lipid content. Reprod Fert Dev 31:462–472. https://doi.org/10.1071/RD18109

    Article  CAS  Google Scholar 

  21. Michalak M, Gye MC (2015) Endoplasmic reticulum stress in peri-implantation embryos. Clin Exp Reprod Med 42:1–7. https://doi.org/10.5653/cerm.2015.42.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sudano MJ, Rascado TD, Tata A, Belaz KR, Santos VG, Valente RS, Mesquita FS, Ferreira CR, Araujo JP, Eberlin MN, Landim-Alvarenga FD (2016) Lipidome signatures in early bovine embryo development. Theriogenology 86:472–484. https://doi.org/10.1016/j.theriogenology.2016.03.025

    Article  CAS  PubMed  Google Scholar 

  23. Knapen MF, Zusterzeel PL, Peters WH, Steegers EA (1999) Glutathione and glutathione-related enzymes in reproduction: a review. Eur J Obstet Gynecol Reprod Biol 82:171–184. https://doi.org/10.1016/S0301-2115(98)00242-5

    Article  CAS  PubMed  Google Scholar 

  24. Adwas AA, Elsayed ASI, Azab AE, Quwaydir FA (2019) Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng 6(1):43–47. https://doi.org/10.15406/jabb.2019.06.00173

    Article  Google Scholar 

  25. Wang Z, Chunquan Fu C, Yu S (2013) Green tea polyphenols added to IVM and IVC media affect transcript abundance, apoptosis, and pregnancy rates in bovine embryos. Theriogenology 79:186–192. https://doi.org/10.1016/j.theriogenology.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  26. Han LQ, Zhou Z, Ma Y, Batistel F, Osorio JS, Loor JJ (2017) Phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) in mammary tissue of Holstein cows during the periparturient period is associated with mRNA abundance of antioxidant gene networks. J Dairy Sci 101:6511–6522. https://doi.org/10.3168/jds.2017-14257

    Article  CAS  Google Scholar 

  27. Ferreira-Silva JC, Silva RLO, Vieira JIT, Silva JB, Tavares LS, Silva FAC, Pena EPN, Chaves MS, Moura MT, Junior TC, Benko-Iseppon AM, Freitas VJF, Oliveira MAL (2021) Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation. Cryobiology 101:115–124. https://doi.org/10.1016/j.cryobiol.2021.04.008

    Article  CAS  PubMed  Google Scholar 

  28. Saber YHA, Ibrahim S, Mahmoud KGM, Seida AAM, Ragab RSA, Ahmed WM (2021) Changes in the relative abundance of miR-205, miR-26a-5p, let-7b and their target genes in vitrified bovine embryos after phenazine ethosulfate supplementation. Adv Anim Vet Sci 9:2157–2167. https://doi.org/10.17582/journal.aavs/2021/9.12.2157.2167

    Article  Google Scholar 

  29. Brackett BG, Oliphant G (1975) Capacitation of rabbit spermatozoa in vitro. Biol Reprod 12:260–274. https://doi.org/10.1095/biolreprod12.2.260

    Article  CAS  PubMed  Google Scholar 

  30. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols 365–386 Springer. https://doi.org/10.1385/1-59259-192-2:365

  31. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  32. Kopeika J, Thonrhill A, Khalf Y (2015) The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 21:209–227. https://doi.org/10.1093/humupd/dmu063

    Article  CAS  PubMed  Google Scholar 

  33. Galeati G, Spinaci M (2015) Resveratrol from red grapes: an useful agent for oocyte maturation and subsequent embryronic development. Austin J Vitro Fertili 2:1014

    Google Scholar 

  34. Silva BR, Silva JRV (2023) Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 249:107186. https://doi.org/10.1016/j.anireprosci.2022.107186

    Article  CAS  PubMed  Google Scholar 

  35. Gutierrez- Castillo E, Diaz FA, Talbot SA, Bondioli KR (2023) Effect of bovine oocyte vitrification with EGTA and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence. Theriogenology 196:59–67. https://doi.org/10.1016/j.theriogenology.2022.11.006

    Article  CAS  PubMed  Google Scholar 

  36. Mahmoud KGM, Scholkamy TH, Darwish SF (2015) Improvement of vitrification of in vitro produced buffalo embryos with a special reference to sex ratio following vitrification. Iran J Veterinary Res 16:325–330

    Google Scholar 

  37. Li R, Li E, Kamili G, Ou S, Yang D (2022) Effect of resveratrol on superovulation in mice. Biomed Pharmacother 146:112565. https://doi.org/10.1016/j.biopha.2021.112565

    Article  CAS  PubMed  Google Scholar 

  38. Sadeesh EM, Sikka P, Balhara AK, Balhara S (2016) Developmental competence and expression profile of genes in buffalo (Bubalusbubalis) oocytes and embryos collected under different environmental stress. Cytotechnology 68:2271–2285. https://doi.org/10.1007/s10616-016-0022-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giroto AB, Fontes PK, Franchi FF, dos Santos PH, Razza EM, Nogueira MFG, Maioli MA, Nogueira GP, Nunes GB, Mingoti GZ, Mareco EA, Castilho ACS (2019) Use of pregnancy associated plasma protein-A during oocyte in vitro maturation increases IGF-1 and affects the transcriptional profile of cumulus cells and embryos from Nelore cows. Mol Reprod Dev 86:1694–1704. https://doi.org/10.1002/mrd.23259

    Article  CAS  PubMed  Google Scholar 

  40. Lee S, Park EJ, Moon JH, Kim SJ, Song K, Lee BC (2015) Sequential treatment with resveratrol-trolox improves development of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer. Theriogenology 84:145–154. https://doi.org/10.1016/j.theriogenology.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  41. Lanzarini F, Pereira FA, de Camargo J, Oliveira AM, Belaz KRA, Melendez-Perez JJ, Eberlin MN, Brum MCS, Mesquita FS, Sudano MJ (2021) ELOVL5 participates in embryonic lipid determination of cellular membranes and cytoplasmic droplets. Int J Mol Sci 22:1–16. https://doi.org/10.3390/ijms22031311

    Article  CAS  Google Scholar 

  42. Jia B, Xiang D, Fu X, Shao Q, Hong Q, Quan G, Wu G (2020) Proteomic changes of porcine oocytes after Vitrification and subsequent in vitro maturation: a Tandem Mass Tag-based quantitative analysis. Front Cell Dev Biol 8:614577. https://doi.org/10.3389/fcell.2020.614577

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kroeger H, Grimsey N, Paxman R, Chiang W, Plate L, Jones Y, Shaw PX, Trejo J, Tsang SH, Powers E, Kelly JW, Wiseman RL, Lin JH (2018) The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Sci Signal 11:517. https://doi.org/10.1126/scisignal.aan5785

    Article  CAS  Google Scholar 

  44. Jang WG, Kim EJ, Kim DK, Ryoo HM, Lee KB, Kim SH, Choi HS, Koh JT (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem 287:905–915. https://doi.org/10.1074/jbc.M111.253187

    Article  CAS  PubMed  Google Scholar 

  45. Naspinska R, Moreira da Silva MH, Moreira da Silva F (2023) Current advances in bovine in Vitro maturation and embryo production using different antioxidants: a review. J Dev Biol 11:36. https://doi.org/10.3390/jdb11030036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garry MR, Kavanagh TJ, Faustman EM, Sidhu JS, Liao R, Ware C, Vliet PA, Deeb SS (2008) Sensitivity of mouse lung fibroblasts heterozygous for GPx4 to oxidative stress. Free Radic Biol Med 44:1075–1087. https://doi.org/10.1016/j.freeradbiomed.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  47. Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR (2012) Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology 77:1632–1641. https://doi.org/10.1016/j.theriogenology.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  48. Ghanem N, HA AN, Fakruzzaman MD, Bang JI, Lee SC, Kong IK (2014) Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism. Theriogenology 82:1–13. https://doi.org/10.1016/j.theriogenology.2014.03.024

    Article  CAS  Google Scholar 

  49. Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, Klaassen CD (2008) NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol ExpTher 325:655–664. https://doi.org/10.1124/jpet.107.135822

    Article  CAS  Google Scholar 

  50. Amin A, Gad A, Salilew-Wondim D, Prastowo S, Held E, Hoelker M, Rings F, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D (2014) Bovine embryo survival under oxidative stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol Reprod Dev 81:497–513. https://doi.org/10.1002/mrd.22316

    Article  CAS  PubMed  Google Scholar 

  51. Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, Ohtsuki M, Goto N, Sugimoto H, Utsunomiya H, Oda K, Warabi E, Ishii T, Yamamoto M (2009) Nrf2 counteracts cholestatic liver injury via stimulation of hepatic defense systems. Biochem Biophys Res Commun 389:431–436. https://doi.org/10.1016/j.bbrc.2009.08.156

    Article  CAS  PubMed  Google Scholar 

  52. Huang J, Tabbi-Anneni I, Gunda V, Wang L (2010) Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol 299:1211–1221. https://doi.org/10.1152/ajpgi.00322.2010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Research Centre, Egypt, for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

YHAS and SI contributed to the study design, methodology, analyses, interpretation of results and writing. KGhMM and WMA participated in study design and revision. AAS and RSAR contributed to experimental design, interpretation of results and manuscript revision.

Corresponding author

Correspondence to Yasser H.A. Saber.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest for the article publication to declare.

Ethical approval

No approval of research ethics committees was required because experimental work was conducted with ovaries from slaughterhouse.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber, Y.H., Ibrahim, S., Mahmoud, K.G.M. et al. Expression profile of viability and stress response genes as a result of resveratrol supplementation in vitrified and in vitro produced cattle embryos. Mol Biol Rep 51, 692 (2024). https://doi.org/10.1007/s11033-024-09614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09614-2

Keywords

Navigation