Skip to main content
Log in

Intracerebroventricular PROK2 infusion could increase the secretion of male reproductive hormones by stimulating the HPG axis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Prokineticin 2 (PROK2), an important neuropeptide that plays a key role in the neuronal migration of gonadotropin-releasing hormone (GnRH) in the hypothalamus, is known to have regulatory effects on the gonads. In the present study, the impact of intracerebroventricular (icv) PROK2 infusion on hypothalamic-pituitary–gonadal axis (HPG) hormones, testicular tissues, and sperm concentration was investigated.

Methods and results

Rats were randomly divided into four groups: control, sham, PROK2 1.5 and PROK2 4.5. Rats in the PROK2 1.5 and PROK2 4.5 groups were administered 1.5 nmol and 4.5 nmol PROK2 intracerebroventricularly for 7 days via an osmotic mini pump (1 µl/h), respectively. Rat blood serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone hormone levels were determined with the ELISA method in the blood samples after 7 days of infusion. GnRH mRNA expression was determined with the RT-PCR in hypothalamus tissues. analyze Sperm concentration was determined, and testicular tissue was examined histologically with the hematoxylin–eosin staining method. It was observed that GnRH mRNA expression increased in both PROK2 infusion groups. Serum FSH, LH and testosterone hormone levels also increased in these groups. Although sperm concentration increased in PROK2 infusion groups when compared to the control and sham, the differences were not statistically significant. Testicular tissue seminiferous epithelial thickness was higher in the PROK2 groups when compared to the control and sham groups.

Conclusion

The present study findings demonstrated that icv PROK2 infusion induced the HPG axis. It could be suggested that PROK2 could be a potential agent in the treatment of male infertility induced by endocrinological defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data can be provided as required.

References

  1. Traboulsi W, Brouillet S, Sergent F, Boufettal H, Samouh N, Aboussaouira T et al (2015) Prokineticins in central and peripheral control of human reproduction. Horm Mol Biol Clin Investig 24(2):73–81. https://doi.org/10.1515/hmbci-2015-0040

    Article  CAS  PubMed  Google Scholar 

  2. Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW et al (2007) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104(44):17447–17452. https://doi.org/10.1073/pnas.0707173104

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maldonado-Pérez D, Evans J, Denison F, Millar RP, Jabbour HN (2007) Potential roles of the prokineticins in reproduction. Trends Endocrinol Metab 18(2):66–72. https://doi.org/10.1016/j.tem.2006.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin C, Balasubramanian R, Dwyer AA, Au MG, Sidis Y, Kaiser UB et al (2011) The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations. Endocr Rev 32(2):225–246. https://doi.org/10.1210/er.2010-0007

    Article  CAS  PubMed  Google Scholar 

  5. Petrella C, Spaziani M, D’Orazi V, Tarani L, Terracina S, Tarani F et al (2022) Prokineticin 2/PROK2 and male infertility. Biomedicines. https://doi.org/10.3390/biomedicines10102389

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cheng MY, Leslie FM, Zhou QY (2006) Expression of prokineticins and their receptors in the adult mouse brain. J Comp Neurol 498(6):796–809. https://doi.org/10.1002/cne.21087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oduwole OO, Huhtaniemi IT, Misrahi M (2021) The roles of luteinizing hormone, follicle-stimulating hormone and testosterone in spermatogenesis and folliculogenesis revisited. Int J Mol Sci 22:23

    Article  Google Scholar 

  8. Christin-Maitre S, Young J (2022) Androgens and spermatogenesis. Ann Endocrinol 83(3):155–158. https://doi.org/10.1016/j.ando.2022.04.010

    Article  Google Scholar 

  9. Ji Y, Li X (2009) Cloning and developmental expression analysis of prokineticin 2 and its receptor PKR2 in the Syrian hamster surpachiasmatic nucleus. Brain Res 1271:18–26. https://doi.org/10.1016/j.brainres.2009.03.021

    Article  CAS  PubMed  Google Scholar 

  10. Zhang C, Truong KK, Zhou Q-Y (2009) Efferent projections of prokineticin 2 expressing neurons in the mouse suprachiasmatic nucleus. PLoS ONE 4(9):e7151. https://doi.org/10.1371/journal.pone.0007151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsumoto S-I, Yamazaki C, Masumoto K-H, Nagano M, Naito M, Soga T et al (2006) Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci USA 103(11):4140–4145. https://doi.org/10.1073/pnas.0508881103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardiner JV, Bataveljic A, Patel NA, Bewick GA, Roy D, Campbell D et al (2010) Prokineticin 2 is a hypothalamic neuropeptide that potently inhibits food intake. Diabetes 59(2):397–406. https://doi.org/10.2337/db09-1198

    Article  CAS  PubMed  Google Scholar 

  13. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover. Elsevier, Amsterdam

    Google Scholar 

  14. Yilmaz U, Tekin S, Demir M, Cigremis Y, Sandal S (2018) Effects of central FGF21 infusion on the hypothalamus-pituitary-thyroid axis and energy metabolism in rats. J Physiol Sci 68(6):781–788. https://doi.org/10.1007/s12576-018-0595-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yilmaz U, Tanbek K (2023) Spexin may induce mitochondrial biogenesis in white and brown adipocytes via the hypothalamus-pituitary-thyroid (HPT) axis. Physiol Behav 273:114401. https://doi.org/10.1016/j.physbeh.2023.114401

    Article  CAS  PubMed  Google Scholar 

  16. Yildiz A, Ozhan O, Ulu A, Dogan T, Bakar B, Ugur Y et al (2023) Effects of the apricot diets containing sulfur dioxide at different concentrations on rat testicles. Environ Sci Pollut Res Int 30(29):74301–74313. https://doi.org/10.1007/s11356-023-27692-w

    Article  CAS  PubMed  Google Scholar 

  17. Ng KL, Li J-D, Cheng MY, Leslie FM, Lee AG, Zhou Q-Y (2005) Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 308(5730):1923–1927

    Article  CAS  PubMed  Google Scholar 

  18. Boughton CK, Patel SA, Thompson EL, Patterson M, Curtis AE, Amin A et al (2013) Neuromedin B stimulates the hypothalamic-pituitary-gonadal axis in male rats. Regul Pept 187:6–11. https://doi.org/10.1016/j.regpep.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  19. Suszka-Świtek A, Pałasz A, Filipczyk Ł, Menezes IC, Mordecka-Chamera K, Angelone T et al (2019) The GnRH analogues affect novel neuropeptide SMIM20/phoenixin and GPR173 receptor expressions in the female rat hypothalamic-pituitary-gonadal (HPG) axis. Clin Exp Pharmacol Physiol 46(4):350–359. https://doi.org/10.1111/1440-1681.13061

    Article  CAS  PubMed  Google Scholar 

  20. Parlak Ak T, Yaman M, Bayrakdar A, Bulmus O (2023) Expression of phoenixin-14 and nesfatin-1 in the hypothalamo-pituitary-gonadal axis in the phases of the estrous cycle. Neuropeptides 97:102299. https://doi.org/10.1016/j.npep.2022.102299

    Article  CAS  PubMed  Google Scholar 

  21. McGowan BM, Stanley SA, Donovan J, Thompson EL, Patterson M, Semjonous NM et al (2008) Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis. Am J Physiol Endocrinol Metab 295(2):E278–E286. https://doi.org/10.1152/ajpendo.00028.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsui H, Asami T (2014) Effects and therapeutic potentials of kisspeptin analogs: regulation of the hypothalamic-pituitary-gonadal axis. Neuroendocrinology 99(1):49–60. https://doi.org/10.1159/000357809

    Article  CAS  PubMed  Google Scholar 

  23. Abreu AP, Trarbach EB, de Castro M, Frade Costa EM, Versiani B, Matias Baptista MT et al (2008) Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. J Clin Endocrinol Metab 93(10):4113–4118. https://doi.org/10.1210/jc.2008-0958

    Article  CAS  PubMed  Google Scholar 

  24. Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D et al (2008) Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab 93(9):3551–3559. https://doi.org/10.1210/jc.2007-2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monnier C, Dodé C, Fabre L, Teixeira L, Labesse G, Pin JP et al (2009) PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Hum Mol Genet 18(1):75–81. https://doi.org/10.1093/hmg/ddn318

    Article  CAS  PubMed  Google Scholar 

  26. Sarfati J, Guiochon-Mantel A, Rondard P, Arnulf I, Garcia-Pinero A, Wolczynski S et al (2010) A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J Clin Endocrinol Metab 95(2):659–669. https://doi.org/10.1210/jc.2009-0843

    Article  CAS  PubMed  Google Scholar 

  27. Tu LH, Yu LL, Xiong CL, Zhang HP (2012) Potential role of prokineticin 2 in experimental varicocele-induced rat testes. Urology. https://doi.org/10.1016/j.urology.2012.05.033

    Article  PubMed  Google Scholar 

  28. Li Y, Zhou T, Su YF, Hu ZY, Wei JJ, Wang W et al (2020) Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian J Androl 22(5):500–506. https://doi.org/10.4103/aja.aja_109_19

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Zhu B, Jing T, Yu L, Zhang K, Liu Y et al (2024) Lycopene inhibits apoptosis of mouse spermatocytes in varicocele via miR-23a/b-induced downregulation of PROK2. Reprod Fertil Dev 36:4

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Assoc. Dr. Meryem Çolak (Department of Microbiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey) and Dr. Kevser Tanbek (Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey) for their technical assistance.

Funding

The present study (Project no: KBÜBAP-22-ABP-099) was sponsored by the Karabük University Scientific Research Projects Department.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NY. Methodology, formal analysis and research: NY and AY. Original draft: NY and AZ. All authors read, critically analyzed and provided their feedback before submission.

Corresponding author

Correspondence to Nesibe Yilmaz.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

The present study was approved by the Karabuk University Animal Experiments Local Ethics Committee on 09.06.2022 (22/6/8).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, N., Yildiz, A. Intracerebroventricular PROK2 infusion could increase the secretion of male reproductive hormones by stimulating the HPG axis. Mol Biol Rep 51, 656 (2024). https://doi.org/10.1007/s11033-024-09604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09604-4

Keywords

Navigation