Skip to main content
Log in

Vitamin C alleviates hyperglycemic stress in retinal pigment epithelial cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs.

Methods and results

ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway.

Conclusions

These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AGEs:

Advanced Glycation End products

AR:

Aldose Reductase

ARPE:

Adult Retinal Pigment Epithelium

DM:

Diabetes Mellitus

DR:

Diabetic Retinopathy

FOXO3:

Forkhead box O3

PARP:

Poly (ADP-ribose) Polymerase

PKC:

Protein Kinase C

ROS:

Reactive Oxygen Species

TNF:

Tumor Necrosis Factor

VEGF:

Vascular Endothelial Growth Factor

HG:

High Glucose

LG:

Low Glucose

RPEC:

Retinal Pigment Epithelial Cell

References

  1. Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sankeshi V, Kumar PA, Naik RR, Sridhar G, Kumar MP, Gopal VV, Raju TN (2013) Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. J Ethnopharmacol 149:215–221

    Article  CAS  PubMed  Google Scholar 

  3. Mohammad G, Alrashed SH, Almater AI, Siddiquei MM, Abu El-Asrar AM (2018) The poly(ADP-Ribose)Polymerase-1 inhibitor 1,5-Isoquinolinediol Attenuate Diabetes-Induced NADPH oxidase-derived oxidative stress in Retina. J Ocul Pharmacol Ther 34:512–520

    Article  CAS  PubMed  Google Scholar 

  4. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30:343–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y et al (2021) Global prevalence of Diabetic Retinopathy and Projection of Burden through 2045: systematic review and Meta-analysis. Ophthalmology 128:1580–1591

    Article  PubMed  Google Scholar 

  6. Chang KC, Petrash JM (2018) Aldo-Keto reductases: multifunctional proteins as therapeutic targets in diabetes and inflammatory disease. Adv Exp Med Biol 1032:173–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coucha M, Elshaer SL, Eldahshan WS, Mysona BA, El-Remessy AB (2015) Molecular mechanisms of diabetic retinopathy: potential therapeutic targets. Middle East Afr J Ophthalmol 22:135–144

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kang Q, Yang C (2020) Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 37:101799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS (2014) Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int 2014, 801269

  10. Calderon GD, Juarez OH, Hernandez GE, Punzo SM, De la Cruz ZD (2017) Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond) 31:1122–1130

    Article  CAS  PubMed  Google Scholar 

  11. Rubsam A, Parikh S, Fort PE (2018) Role of inflammation in Diabetic Retinopathy. Int J Mol Sci 19

  12. Takamura Y, Tomomatsu T, Kubo E, Tsuzuki S, Akagi Y (2008) Role of the polyol pathway in high glucose-induced apoptosis of retinal pericytes and proliferation of endothelial cells. Invest Ophthalmol Vis Sci 49:3216–3223

    Article  PubMed  Google Scholar 

  13. Zhou M, Zhang P, Xu X, Sun X (2015) The relationship between Aldose Reductase C106T Polymorphism and Diabetic Retinopathy: an updated Meta-analysis. Invest Ophthalmol Vis Sci 56:2279–2289

    Article  CAS  PubMed  Google Scholar 

  14. Giugliano D, Ceriello A, Esposito K (2008) Glucose metabolism and hyperglycemia. Am J Clin Nutr 87:217S–222S

    Article  CAS  PubMed  Google Scholar 

  15. Reddy GB, Satyanarayana A, Balakrishna N, Ayyagari R, Padma M, Viswanath K, Petrash JM (2008) Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy. Mol Vis 14:593–601

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kao CY, Chen JW, Liu TL, Yan JJ, Wu JJ (2018) Comparative Genomics of Escherichia coli sequence type 219 clones from the same patient: evolution of the IncI1 bla(CMY)-Carrying plasmid in vivo. Front Microbiol 9:1518

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhong Q, Mishra M, Kowluru RA (2013) Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 54:3941–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  20. Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60:327–346

    Article  CAS  PubMed  Google Scholar 

  21. Chang KC, Snow A, LaBarbera DV, Petrash JM (2015) Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem Biol Interact 234:254–260

    Article  CAS  PubMed  Google Scholar 

  22. Ramana KV, Srivastava SK (2010) Aldose reductase: a novel therapeutic target for inflammatory pathologies. Int J Biochem Cell Biol 42:17–20

    Article  CAS  PubMed  Google Scholar 

  23. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P (2013) Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 28:314–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marin JJG, Perez MJ, Serrano MA, Macias RIR (2018) In: The Liver VB, Patel R, Rajendram, Preedy VR (eds) Chapter 13 - chemoprotective role of vitamin C in Liver diseases. Academic, Boston, pp 139–153

    Google Scholar 

  25. Root-Bernstein R, Busik JV, Henry DN (2002) Are Diabetic Neuropathy, Retinopathy and Nephropathy caused by Hyperglycemic Exclusion of Dehydroascorbate Uptake by glucose transporters? J Theor Biol 216:345–359

    Article  CAS  PubMed  Google Scholar 

  26. Kumagai AK, Glasgow BJ, Pardridge WM (1994) GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. Investig Ophthalmol Vis Sci 35:2887–2894

    CAS  Google Scholar 

  27. Mantych GJ, Hageman GS, Devaskar SU (1993) Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology 133:600–607

    Article  CAS  PubMed  Google Scholar 

  28. Khurana V, Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK (2015) Functional characterization and Molecular Identification of Vitamin C Transporter (SVCT2) in human corneal epithelial (HCEC) and retinal pigment epithelial (D407) cells. Curr Eye Res 40:457–469

    Article  CAS  PubMed  Google Scholar 

  29. Parker WH, Qu Z-c, May JM (2015) Ascorbic acid transport in brain microvascular pericytes. Biochem Biophys Res Commun 458:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kannan R, Stolz A, Ji Q, Prasad PD, Ganapathy V (2001) Vitamin C Transport in Human Lens epithelial cells: evidence for the Presence of SVCT2. Exp Eye Res 73:159–165

    Article  CAS  PubMed  Google Scholar 

  31. Portugal CC, Socodato R, Canedo T, Silva CM, Martins T, Coreixas VSM, Loiola EC, Gess B, Röhr D, Santiago AR et al (2017) Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype. 10:eaal2005

  32. Harrison FE, Dawes SM, Meredith ME, Babaev VR, Li L, May JM (2010) Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2. Free Radic Biol Med 49:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumari S, Panda S, Mangaraj M, Mandal MK, Mahapatra PC (2008) Plasma MDA and antioxidant vitamins in diabetic retinopathy. Indian J Clin Biochem 23:158–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park SW, Ghim W, Oh S, Kim Y, Park UC, Kang J, Yu HG (2019) Association of vitreous vitamin C depletion with diabetic macular ischemia in proliferative diabetic retinopathy. PLoS ONE 14, e0218433

  35. Williams M, Hogg RE, Chakravarthy U (2013) Antioxidants and diabetic retinopathy. Curr Diab Rep 13:481–487

    Article  CAS  PubMed  Google Scholar 

  36. Rema M, Mohan V, Bhaskar A, Shanmugasundaram KR (1995) Does oxidant stress play a role in diabetic retinopathy? Indian J Ophthalmol 43:17–21

    CAS  PubMed  Google Scholar 

  37. Kazmierczak-Baranska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT (2020) Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients 12

  38. Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, Agata D, V., and, Giunta S (2021) Attenuation of high glucose-Induced damage in RPE cells through p38 MAPK signaling pathway inhibition. Front Pharmacol 12:684680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shivarudrappa AH, Ponesakki G (2020) Lutein reverses hyperglycemia-mediated blockage of Nrf2 translocation by modulating the activation of intracellular protein kinases in retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal 14:207–221

    Article  PubMed  Google Scholar 

  40. Fernandez-Godino R, Garland DL, Pierce EA (2016) Isolation, culture and characterization of primary mouse RPE cells. Nat Protoc 11:1206–1218

    Article  CAS  PubMed  Google Scholar 

  41. Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong X, Wen B, Zhang Z (2018) The Pathogenesis of Diabetes Mellitus by oxidative stress and inflammation: its inhibition by Berberine. Front Pharmacol 9:782

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ruan Y, Jiang S, Musayeva A, Gericke A (2020) Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 9

  43. Heo HJ, Lee CY (2004) Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52:7514–7517

    Article  CAS  PubMed  Google Scholar 

  44. Lindahl T, Satoh MS, Poirier GG, Klungland A (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20:405–411

    Article  CAS  PubMed  Google Scholar 

  45. Kovacs K, Vaczy A, Fekete K, Kovari P, Atlasz T, Reglodi D, Gabriel R, Gallyas F, Sumegi B (2019) PARP Inhibitor Protects against Chronic Hypoxia/Reoxygenation-Induced Retinal Injury by Regulation of MAPKs, HIF1alpha, Nrf2, and NFkappaB. Invest Ophthalmol Vis Sci 60:1478–1490

    Article  CAS  PubMed  Google Scholar 

  46. Schemmel KE, Padiyara RS, D’Souza JJ (2010) Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J Diabetes Complications 24:354–360

    Article  PubMed  Google Scholar 

  47. Jiang T, Chang Q, Cai J, Fan J, Zhang X, Xu G (2016) Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy. Oxid Med Cell Longev 2016, 3528274

  48. Shi H, Zhang Z, Wang X, Li R, Hou W, Bi W, Zhang X (2015) Inhibition of autophagy induces IL-1beta release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress. Biochem Biophys Res Commun 463:1071–1076

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Yu S, Duncan T, Li Y, Liu P, Gene E, Cortes-Pena Y, Qian H, Dong L, Redmond TM (2015) Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage. Hum Mol Genet 24:4417–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Métrailler S, Schorderet DF, Cottet S (2012) Early apoptosis of rod photoreceptors in Rpe65(-/-) mice is associated with the upregulated expression of lysosomal-mediated autophagic genes. Exp Eye Res 96:70–81

    Article  PubMed  Google Scholar 

  51. Cai X, Conley SM, Naash MI (2009) RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet 30:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rao H, Jalali JA, Johnston TP, Koulen P (2021) Emerging roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular mechanisms and clinical perspectives. Front Endocrinol (Lausanne) 12:620045

    Article  PubMed  Google Scholar 

  53. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 100:1–19

    Article  CAS  PubMed  Google Scholar 

  54. Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE (2022) Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel) 11

  55. Cunningham JJ, Mearkle PL, Brown RG (1994) Vitamin C: an aldose reductase inhibitor that normalizes erythrocyte sorbitol in insulin-dependent diabetes mellitus. J Am Coll Nutr 13:344–350

    Article  CAS  PubMed  Google Scholar 

  56. Zeitz O, Schlichting L, Richard G, Strauss O (2007) Lack of antioxidative properties of vitamin C and pyruvate in cultured retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 245:276–281

    Article  CAS  PubMed  Google Scholar 

  57. Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N (2018) The role of sirtuins in antioxidant and Redox Signaling. Antioxid Redox Sign 28:643–661

    Article  CAS  Google Scholar 

  58. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61:95–110

    Article  CAS  PubMed  Google Scholar 

  59. Wei W, Li L, Zhang Y, Geriletu, Yang J, Zhang Y, Xing Y (2014) Vitamin C protected human retinal pigmented epithelium from oxidant injury depending on regulating SIRT1. ScientificWorldJournal 2014, 750634

  60. Widlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ, Kluge MA, Weihrauch D, Gutterman DD, Vita JA (2010) Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Translational Research: J Lab Clin Med 156:15–25

    Article  CAS  Google Scholar 

  61. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. In: Palmeira CM, Moreno AJ (eds) Mitochondrial bioenergetics: methods and protocols. Humana, Totowa, NJ, pp 183–205

    Chapter  Google Scholar 

  62. Trudeau K, Molina AJ, Guo W, Roy S (2010) High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am J Pathol 177:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luo X, Wu J, Jing S, Yan LJ (2016) Hyperglycemic stress and Carbon stress in Diabetic Glucotoxicity. Aging Dis 7:90–110

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lin C, Holland RE Jr., Donofrio JC, McCoy MH, Tudor LR, Chambers TM (2002) Caspase activation in equine influenza virus induced apoptotic cell death. Vet Microbiol 84:357–365

    Article  CAS  PubMed  Google Scholar 

  65. Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM (2016) Poly(ADP-Ribose) Polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of Diabetic rats. Neurochem Res 41:2526–2537

    Article  CAS  PubMed  Google Scholar 

  66. Byun K, Yoo Y, Son M, Lee J, Jeong GB, Park YM, Salekdeh GH, Lee B (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55

    Article  CAS  PubMed  Google Scholar 

  67. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R–28R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chandler Meadows, Hui-Chun Cheng, Soureesh Moturi, and Shining Wang for their technical assistance.

Funding

The work was supported by the NIH Core Grant P30-EY008098, the Eye and Ear Foundation of Pittsburgh, an unrestricted grant from Research to Prevent Blindness, New York, NY, the Shaffer grant from Glaucoma Research Foundation, and the Biomedical Masters Program at University of Pittsburgh. VYL was supported by Hillman Academy.

Author information

Authors and Affiliations

Authors

Contributions

HA, CCL, ER, VYL conducted experiments and analyzed data; HA, PR and KCC wrote the manuscript; KCC supervised the whole project.

Corresponding author

Correspondence to Kun-Che Chang.

Ethics declarations

Ethics approval and consent

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmari, H., Liu, CC., Rubin, E. et al. Vitamin C alleviates hyperglycemic stress in retinal pigment epithelial cells. Mol Biol Rep 51, 637 (2024). https://doi.org/10.1007/s11033-024-09595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09595-2

Keywords

Navigation