Skip to main content
Log in

Human umbilical cord mesenchymal stem cell-derived exosomes alleviate the severity of experimental autoimmune encephalomyelitis and enhance lag-3 expression on foxp3 + CD4 + T cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Multiple sclerosis (MS) is a complex autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Understanding the dysregulation of Tregs, dynamic cells involved in autoimmunity, is crucial in comprehending diseases like MS. However, the role of lymphocyte-activation gene 3 (Lag-3) in MS remains unclear.

Methods

In this study, we explore the potential of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSCs-Exs) as an immune modulator in experimental autoimmune encephalomyelitis (EAE), a model for MS.

Results

Using flow cytometry, our research findings indicate that groups receiving treatment with hUMSC-Exs revealed a significant increase in Lag-3 expression on Foxp3 + CD4 + T cells. Furthermore, cell proliferation conducted on spleen tissue samples from EAE mice using the CFSE method exposed to hUMSC-Exs yielded relevant results.

Conclusions

These results suggest that hUMSCs-Exs could be a promising anti-inflammatory agent to regulate T-cell responses in EAE and other autoimmune diseases. However, further research is necessary to fully understand the underlying mechanisms and Lag-3’s precise role in these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Kuhlmann T, Antel J (2023) Multiple sclerosis: 2023 update. Free Neuropathol 4. https://doi.org/10.17879/freeneuropathology-2023-4675

  2. Alfredsson L, Olsson T (2019) Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med 9(4). https://doi.org/10.1101/cshperspect.a028944

  3. Huang W-J, Chen W-W, Zhang X (2017) Multiple sclerosis: Pathology, diagnosis and treatments. Experimental and therapeutic medicine 13. 63163–3166. https://doi.org/10.3892/etm.2017.4410

  4. Tavazzi E, Rovaris M, La Mantia L (2014) Drug therapy for multiple sclerosis. CMAJ 186(11):833–840. https://doi.org/10.1503/cmaj.130727

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q (2016) Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death & Disease 7(1): e2062-e2062: https://doi.org/10.1038/cddis.2015.327

  6. Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X (2020) Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 11(1):345. https://doi.org/10.1186/s13287-020-01855-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Seo Y, Kim H-S, Hong I-S (2019) Stem cell-derived extracellular vesicles as Immunomodulatory therapeutics. Stem Cells Int 2019. https://doi.org/10.1155/2019/5126156

  8. Qian X, An N, Ren Y, Yang C, Zhang X, Li L (2021) Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Reviews Rep 17(2):411–427. https://doi.org/10.1007/s12015-020-10040-7

    Article  CAS  Google Scholar 

  9. Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M, Zhou F (2020) The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol 17(4):323–334. https://doi.org/10.1038/s41423-020-0391-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang JH, Liu XL, Sun JM, Yang JH, Xu DH, Yan SS (2020) Role of mesenchymal stem cell derived extracellular vesicles in autoimmunity: a systematic review. World J Stem Cells 12(8):879–896. https://doi.org/10.4252/wjsc.v12.i8.879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kimura K (2020) Regulatory T cells in multiple sclerosis. Clin Experimental Neuroimmunol 11(3):148. https://doi.org/10.1111/cen3.12591. 155: https://DOI:

    Article  Google Scholar 

  12. Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348(6234) 589 – 94: https://DOI. https://doi.org/10.1126/science.aaa7017

  13. McIntosh CM, Alegre M-L (2019) Teamwork by IL-10 + and IL-35 + Tregs. American. J Transplantation 19(8):2147. https://doi.org/10.1111/ajt.15511. 2147: https://DOI

    Article  Google Scholar 

  14. Kumar P, Bhattacharya P, Prabhakar BS (2018) A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 95:77–99. https://doi.org/10.1016/j.jaut.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pohar J, O’Connor R, Manfroi B, El-Behi M, Jouneau L, Boudinot P, Bunse M, Uckert W, Luka M, Ménager M, Liblau R, Anderton SM, Fillatreau S (2022) Antigen receptor-engineered Tregs inhibit CNS autoimmunity in cell therapy using nonredundant immune mechanisms in mice. European Journal of Immunology 52(8): 1335–1349: https://https://doi.org/10.1002/eji.202249845

  16. Thaker YR, Andrews LP, Workman CJ, Vignali DAA, Sharpe AH (2018) Treg-specific LAG3 deletion reveals a key role for LAG3 in regulatory T cells to inhibit CNS autoimmunity. J Immunol 200(1Supplement):101. https://doi.org/10.4049/jimmunol.200.Supp.101.7

    Article  Google Scholar 

  17. Gertel S, Polachek A, Elkayam O, Furer V (2022) Lymphocyte activation gene-3 (LAG-3) regulatory T cells: an evolving biomarker for treatment response in autoimmune diseases. Autoimmun rev 21(6):103085. https://doi.org/10.1016/j.autrev.2022.103085. https://DOI

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, Normolle D, Bettini M, Workman CJ, Vignali DAA (2017) LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci Immunol 2(9). https://doi.org/10.1126/sciimmunol.aah4569

  19. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R (2015) Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67(5):793–807. https://doi.org/10.1007/s10616-014-9718-z

    Article  CAS  PubMed  Google Scholar 

  20. Jung MK, Mun JY (2018) Sample Preparation and Imaging of exosomes by Transmission Electron Microscopy. J Vis Exp 131https://doi.org/10.3791/56482

  21. Huntemann N, Vogelsang A, Groeneweg L, Willison A, Herrmann AM, Meuth SG, Eichler S (2022) An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. J Neurosci Methods 367. https://doi.org/10.1016/j.jneumeth.2021.109443. 109443: https://DOI

  22. Yin K, Wang S, Zhao RC (2019) Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res 7(1):8. https://doi.org/10.1186/s40364-019-0159-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Li N, Yu X, Huang K, Zheng T, Cheng X, Zeng S, Liu X (2018) Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound. Sci Rep 8(1):12259. https://doi.org/10.1038/s41598-018-30755-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma VK, Bayry J (2022) Restoration of established systemic inflammation and autoimmunity by Foxp3 + regulatory T cells. Cellular &. Mol Immunol 19(2):133–135. https://doi.org/10.1038/s41423-021-00831-4

    Article  CAS  Google Scholar 

  25. Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, Normolle D, Bettini M, Workman CJ, Vignali DAA (2017) LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci Immunol 2(9):eaah4569. https://doi.org/10.1126/sciimmunol.aah4569

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verma ND, Lam AD, Chiu C, Tran GT, Hall BM, Hodgkinson SJ (2021) Multiple sclerosis patients have reduced resting and increased activated CD4 + CD25 + FOXP3 + T regulatory cells. Sci Rep 11(1):10476. https://doi.org/10.1038/s41598-021-88448-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu S, Fujio K, Ishigaki K, Shoda H, Okamura T, Noor T, Sumitomo S, Yamamoto K (2012) Increased concentration of serum soluble LAG3 in systemic lupus erythematosus. Arthritis Res Ther 14(Suppl 1):P16. https://doi.org/10.1186/ar3617Epub 2012 Feb 9

    Article  PubMed Central  Google Scholar 

  28. Kato R, Sumitomo S, Tsuchida Y, Tsuchiya H, Nakachi S, Sakurai K, Hanata N, Nagafuchi Y, Kubo K, Tateishi S, Kanda H, Okamura T, Yamamoto K, Fujio K (2019) CD4 + CD25 + LAG3 + T cells with a feature of Th17 cells Associated with systemic Lupus Erythematosus Disease Activity. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01619

  29. Lundmark F, Harbo HF, Celius EG, Saarela J, Datta P, Oturai A, Lindgren CM, Masterman T, Salter H, Hillert J (2006) Association analysis of the LAG3 and CD4 genes in multiple sclerosis in two independent populations. J Neuroimmunol 180(1):193–198. https://doi.org/10.1016/j.jneuroim.2006.08.009. https://DOI

    Article  CAS  PubMed  Google Scholar 

  30. García-Martín E, Agúndez JAG, Gómez-Tabales J, Benito-León J, Millán-Pascual J, Díaz-Sánchez M, Calleja P, Turpín-Fenoll L, Alonso-Navarro H, García-Albea E, Plaza-Nieto JF, Jiménez-Jiménez FJ (2022) Association between LAG3/CD4 genes variants and risk for multiple sclerosis. Int J Mol Sci 23(23):15244

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kadowaki A, Miyake S, Saga R, Chiba A, Mochizuki H, Yamamura T (2016) Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun 7(11639). https://doi.org/10.1038/ncomms11639

  32. Do J, Kim D, Kim S, Valentin-Torres A, Dvorina N, Jang E, Nagarajavel V, DeSilva TM, Li X, Ting AH, Vignali DAA, Stohlman SA, Baldwin WM, Min B (2017) Treg-specific IL-27Rα deletion uncovers a key role for IL-27 in Treg function to control autoimmunity. Proceedings of the National Academy of Sciences 114(38): 10190–10195: https://DOI: https://doi.org/10.1073/pnas.1703100114

  33. Maruhashi T, Sugiura D, Okazaki IM, Okazaki T (2020) LAG-3: from molecular functions to clinical applications. J Immunother Cancer 8(2). https://doi.org/10.1136/jitc-2020-001014

  34. Jones A, Opejin A, Henderson JG, Gross C, Jain R, Epstein JA, Flavell RA, Hawiger D (2015) Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells that require Hopx to inhibit intrinsic IL-2 expression. J Immunol 195(4):1489. https://doi.org/10.4049/jimmunol.1500174

    Article  CAS  PubMed  Google Scholar 

  35. Kitz A, Dominguez-Villar M (2017) Molecular mechanisms underlying Th1-like Treg generation and function. Cellular. Mol Life Sci 74(22):4059–4075. https://doi.org/10.1007/s00018-017-2569-y

    Article  CAS  Google Scholar 

  36. Maeda TK, Sugiura D, Okazaki IM, Maruhashi T, Okazaki T (2019) Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. J Biol Chem 294(15):6017–6026. https://doi.org/10.1074/jbc.RA119.007455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kleinewietfeld M, Hafler DA (2013) The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 25(4) 305 – 12: https://DOI:. https://doi.org/10.1016/j.smim.2013.10.009

  38. Dabrowska S, Andrzejewska A, Janowski M, Lukomska B (2021) Immunomodulatory and Regenerative effects of mesenchymal stem cells and extracellular vesicles: Therapeutic Outlook for Inflammatory and degenerative diseases. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.591065

  39. Negi N, Griffin MD (2020) Effects of mesenchymal stromal cells on regulatory T cells: current understanding and clinical relevance. Stem Cells 38(5):596–605. https://doi.org/10.1002/stem.3151. https://DOI

    Article  PubMed  Google Scholar 

  40. Gomzikova MO, James V, Rizvanov AA (2019) Therapeutic application of mesenchymal stem cells derived Extracellular vesicles for Immunomodulation. Front Immunol 10(2663). https://doi.org/10.3389/fimmu.2019.02663

  41. Willis GR, Mitsialis SA, Kourembanas S (2018) Good things come in small packages: application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 83(1–2):298–307. https://doi.org/10.1038/pr.2017.256

    Article  CAS  PubMed  Google Scholar 

  42. Di Trapani M, Bassi G, Midolo M, Gatti A, Takam Kamga P, Cassaro A, Carusone R, Adamo A, Krampera M (2016) Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 6(1):24120. https://doi.org/10.1038/srep24120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang B, Yeo RWY, Lai RC, Sim EWK, Chin KC, Lim SK (2018) Mesenchymal stromal cell exosome–enhanced regulatory T-cell production through an antigen-presenting cell–mediated pathway. Cytotherapy 20(5):687–696. https://doi.org/10.1016/j.jcyt.2018.02.372. https://DOI

    Article  CAS  PubMed  Google Scholar 

  44. Varderidou-Minasian S, Lorenowicz MJ (2020) Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 10(13):5979–5997. https://doi.org/10.7150/thno.40122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Dr. Behzad Baradaran and Elham Baghbani, Tabriz University of Medical Sciences, for their assistance in performing flow cytometry.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mohammadzadeh Adel, designed and performed many of the experiments and conceptual interpretations. Masoud Lahouti, Hamed, Arash and Sahand were involved in performing the practical examination.Jafar Rezaei helped in exosome isolation and interpretation. Shahria Alipour and Vahid designed and Helped in RT-PCR. Dr Hassan Ansari revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adel Mohammadzadeh.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

This study was granted by the Ethics Committee of the Urmia University of Medical Science Animal Ethics Committee (IR.UMSU.REC.1399.069).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Lahouty, M., charkhian, H. et al. Human umbilical cord mesenchymal stem cell-derived exosomes alleviate the severity of experimental autoimmune encephalomyelitis and enhance lag-3 expression on foxp3 + CD4 + T cells. Mol Biol Rep 51, 522 (2024). https://doi.org/10.1007/s11033-024-09433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09433-5

Keywords

Navigation