Skip to main content

Advertisement

Log in

Palbociclib inhibits the progression of head and neck cancer and improves the Cetuximab response under specific condition in vitro and in vivo

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In head and neck squamous cell carcinoma (HNSCC) with human papillomavirus (HPV)-negative, deregulation of cell cycle is partly due to inactivation of p16INK4 and overexpression of cyclin D1. Here we investigated the in vitro and in vivo effects of the CDK4/6 inhibitor Palbociclib alone or combined with EGFR inhibitor Cetuximab in HNSCC.

Methods and results

CCK-8, soft agar assay, colony formation assay, wound healing assay and transwell assay, β-galactosidase assay, western blotting, and cell-derived xenografts were used to investigated the in vitro and in vivo activity of drugs. Cell viability and colony formation decreased in a dose-dependent manner in Tu686, AMC-HN8, and Fadu cells under Palbociclib treatment. Palbociclib remarkably inhibited migration, invasion and the expression MMP-9 in HNSCC cells. Palbociclib also induced senescence. Palbociclib caused the dephosphorylation of RB but increased the cyclin D1 level in a dose-dependent manner. Moreover, combination with Cetuximab could significantly prevent the induction of cyclin D1 and activation of EGFR signals from Palbociclib treatment. Nevertheless, only within the range of certain concentrations, a synergistic inhibitory effect on cell growth was observed when combined with Palbociclib and Cetuximab. Although the synergistic effect in Palbociclib/Cetuximab combined therapy was comparable to that in traditional chemotherapeutic regimens (cisplatin/Cetuximab) in Fadu tumor xenograft, the combination therapy was less active than Cetuximab monotherapy in Tu686 tumor xenograft.

Conclusion

In HPV-negative HNSCC, CDK4/6 inhibitor shows promising anti-tumor effects, which exhibits a synergistic effect when combined with EGFR inhibitor only in specific drug concentration and mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the conclusions of this study are obtained from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF (2021) Head and neck cancer. Lancet 398:2289–2299

    Article  PubMed  Google Scholar 

  3. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S et al (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127

    Article  CAS  PubMed  Google Scholar 

  4. Guigay J, Auperin A, Fayette J, Saada-Bouzid E, Lafond C, Taberna M et al (2021) Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as first-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): a multicentre, open-label, randomised, phase 2 trial. LANCET ONCOL 22:463–475

    Article  CAS  PubMed  Google Scholar 

  5. Vermorken JB, Herbst RS, Leon X, Amellal N, Baselga J (2008) Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. CANCER-AM CANCER SOC 112:2710–2719

    CAS  Google Scholar 

  6. Chaudhary S, Pothuraju R, Rachagani S, Siddiqui JA, Atri P, Mallya K et al (2021) Dual blockade of EGFR and CDK4/6 delays head and neck squamous cell carcinoma progression by inducing metabolic rewiring. CANCER LETT 510:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Caloen G, Schmitz S, El BM, Caignet X, Pyr DRS, Roger PP et al (2020) Preclinical activity of Ribociclib in squamous cell carcinoma of the Head and Neck. MOL CANCER THER 19:777–789

    Article  PubMed  Google Scholar 

  8. Turner NC, Slamon DJ, Ro J, Bondarenko I, Im SA, Masuda N et al (2018) Overall survival with Palbociclib and fulvestrant in advanced breast Cancer. N Engl J Med 379:1926–1936

    Article  CAS  PubMed  Google Scholar 

  9. Temam S, Kawaguchi H, El-Naggar AK, Jelinek J, Tang H, Liu DD et al (2007) Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J CLIN ONCOL 25:2164–2170

    Article  CAS  PubMed  Google Scholar 

  10. Ang KK, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH et al (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. CANCER RES 62:7350–7356

    CAS  PubMed  Google Scholar 

  11. Adkins D, Ley J, Neupane P, Worden F, Sacco AG, Palka K et al (2019) Palbociclib and cetuximab in platinum-resistant and in cetuximab-resistant human papillomavirus-unrelated head and neck cancer: a multicentre, multigroup, phase 2 trial. LANCET ONCOL 20:1295–1305

    Article  CAS  PubMed  Google Scholar 

  12. Adkins DR, Lin JC, Sacco A, Ley J, Oppelt P, Vanchenko V et al (2021) Palbociclib and cetuximab compared with placebo and cetuximab in platinum-resistant, cetuximab-naive, human papillomavirus-unrelated recurrent or metastatic head and neck squamous cell carcinoma: a double-blind, randomized, phase 2 trial. ORAL ONCOL 115:105192

    Article  CAS  PubMed  Google Scholar 

  13. Li RC, Du Y, Zeng QY, Tang LQ, Zhang H, Li Y et al (2016) Antibodies against Epstein-Barr Virus Glycoprotein gp42 for the diagnosis of Nasopharyngeal Carcinoma. CLIN LAB 62:553–561

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez-Perez M, El-hajahmad M, Massaro J, Mahalingam M (2012) Expression of gelatinases (MMP-2, MMP-9) and gelatinase activator (MMP-14) in actinic keratosis and in in situ and invasive squamous cell carcinoma. Am J Dermatopathol 34:723–728

    Article  PubMed  Google Scholar 

  15. Mountzios G, Rampias T, Psyrri A (2014) The mutational spectrum of squamous-cell carcinoma of the head and neck: targetable genetic events and clinical impact. ANN ONCOL 25:1889–1900

    Article  CAS  PubMed  Google Scholar 

  16. Beck TN, Georgopoulos R, Shagisultanova EI, Sarcu D, Handorf EA, Dubyk C et al (2016) EGFR and RB1 as dual biomarkers in HPV-Negative Head and Neck Cancer. MOL CANCER THER 15:2486–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Caloen G, Machiels JP (2019) Potential role of cyclin-dependent kinase 4/6 inhibitors in the treatment of squamous cell carcinoma of the head and neck. CURR OPIN ONCOL 31:122–130

    Article  PubMed  Google Scholar 

  18. Sathe A, Koshy N, Schmid SC, Thalgott M, Schwarzenbock SM, Krause BJ et al (2016) CDK4/6 inhibition controls proliferation of bladder Cancer and transcription of RB1. J Urol 195:771–779

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Pan J (2017) Dual cyclin-dependent kinase 4/6 inhibition by PD-0332991 induces apoptosis and senescence in oesophageal squamous cell carcinoma cells. Br J Pharmacol 174:2427–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubio C, Martinez-Fernandez M, Segovia C, Lodewijk I, Suarez-Cabrera C, Segrelles C et al (2019) CDK4/6 inhibitor as a Novel Therapeutic Approach for Advanced bladder Cancer independently of RB1 Status. CLIN CANCER RES 25:390–402

    Article  CAS  PubMed  Google Scholar 

  21. Gao Y, Shen J, Choy E, Mankin H, Hornicek F, Duan Z (2017) Inhibition of CDK4 sensitizes multidrug resistant ovarian cancer cells to paclitaxel by increasing apoptosiss. Cell Oncol (Dordr) 40:209–218

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Jin X, Fang S, Li Y, Wang R, Guo W et al (2004) The functional SNP in the matrix metalloproteinase-3 promoter modifies susceptibility and lymphatic metastasis in esophageal squamous cell carcinoma but not in gastric cardiac adenocarcinoma. Carcinogenesis 25:2519–2524

    Article  CAS  PubMed  Google Scholar 

  23. Kerkela E, Saarialho-Kere U (2003) Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. EXP DERMATOL 12:109–125

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Korc M (2012) Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. MOL CANCER THER 11:2138–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chou A, Froio D, Nagrial AM, Parkin A, Murphy KJ, Chin VT et al (2018) Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut 67:2142–2155

    Article  CAS  PubMed  Google Scholar 

  26. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gadsden NJ, Fulcher CD, Li D, Shrivastava N, Thomas C, Segall JE et al (2021) Palbociclib renders human papilloma virus-negative Head and Neck squamous cell Carcinoma Vulnerable to the Senolytic Agent Navitoclax. MOL CANCER RES 19:862–873

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang C, Li Z, Bhatt T, Dickler M, Giri D, Scaltriti M et al (2017) Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36:2255–2264

    Article  CAS  PubMed  Google Scholar 

  29. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J et al (2011) Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. CLIN CANCER RES 17:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burtness B, Bauman JE, Galloway T (2013) Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. LANCET ONCOL 14:e302–309

    Article  CAS  PubMed  Google Scholar 

  31. Kalish LH, Kwong RA, Cole IE, Gallagher RM, Sutherland RL, Musgrove EA (2004) Deregulated cyclin D1 expression is associated with decreased efficacy of the selective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in head and neck squamous cell carcinoma cell lines. CLIN CANCER RES 10:7764–7774

    Article  CAS  PubMed  Google Scholar 

  32. Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W et al (2016) Overcoming Therapeutic Resistance in HER2-Positive breast cancers with CDK4/6 inhibitors. Cancer Cell 29:255–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Modjtahedi H (2005) Molecular therapy of head and neck cancer. Cancer Metastasis Rev 24:129–146

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Maul-Pavicic A, Holzer M, Huber M, Salzer U, Chevalier N et al (2022) Detection and functional resolution of soluble immune complexes by an FcgammaR reporter cell panel. EMBO MOL MED 14:e14182

    Article  CAS  PubMed  Google Scholar 

  35. van Caloen G, Schmitz S, van Marcke C, Caignet X, Mendola A, Pyr DRS et al (2021) Preclinical Evaluation of the Association of the cyclin-dependent kinase 4/6 inhibitor, Ribociclib, and Cetuximab in squamous cell carcinoma of the Head and Neck. Cancers (Basel) 13:1251

    Article  PubMed  Google Scholar 

  36. Gu Z, Shi C, Li J, Han Y, Sun B, Zhang W et al (2022) Palbociclib-based high-throughput combination drug screening identifies synergistic therapeutic options in HPV-negative head and neck squamous cell carcinoma. BMC MED 20:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Medical Guidance Project of the Shanghai Science and Technology Commission [number 21Y11900300] and the National Key R&D Program of China [number 2020YFE0205500].

Author information

Authors and Affiliations

Authors

Contributions

Ruichen Li: Conceptualization, Methodology, Software, Formal analysis, Investigation, Visualization, Writing-Original Draft; Qi Wang: Methodology, Software, Formal analysis, Validation, Visualization, Writing-Original Draft; Yang Zhao: Investigation, Formal analysis; Yi Zhu: Conceptualization, Methodology, Supervision, Writing-Review & Editing; Xiaoshen Wang: Conceptualization, Supervision, Project administration, Funding acquisition, Writing-Review & Editing.

Corresponding authors

Correspondence to Yi Zhu or Xiaoshen Wang.

Ethics declarations

Ethical approval

Animal studies were performed on the basis of the International Animal Care and Use Committee-approved protocol (IACUC). The research was approved by the Ethics Committee of the Eye & ENT Hospital of Fudan University (approval numbers: 2019062-1).

Conflict of interest

The authors declare no potential conflicts of interest.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, Q., Zhao, Y. et al. Palbociclib inhibits the progression of head and neck cancer and improves the Cetuximab response under specific condition in vitro and in vivo. Mol Biol Rep 51, 455 (2024). https://doi.org/10.1007/s11033-024-09423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09423-7

Keywords

Navigation