Skip to main content
Log in

p-Smad3 differentially regulates the cytological behavior of osteoclasts before and after osteoblasts maturation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported.

Methods

MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-β1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention.

Results

We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts.

Conclusions

As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873. https://doi.org/10.1016/j.clinbiochem.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  2. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-osteoclast communication and Bone Homeostasis. https://doi.org/10.3390/cells9092073. Cells 9:2073

  3. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105:20764–20769. https://doi.org/10.1073/pnas.0805133106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, Udagawa N, Aoki K, Suzuki H (2018) Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561:195–200. https://doi.org/10.1038/s41586-018-0482-7

    Article  CAS  PubMed  Google Scholar 

  5. Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X (2014) PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 20:1270–1278. https://doi.org/10.1038/nm.3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rindone AN, Liu X, Farhat S, Perdomo-Pantoja A, Witham TF, Coutu DL, Wan M, Grayson WL (2021) Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat Commun 12:6219. https://doi.org/10.1038/s41467-021-26455-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borton AJ, Frederick JP, Datto MB, Wang XF, Weinstein RS (2001) The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Min Res 16:1754–1764. https://doi.org/10.1359/jbmr.2001.16.10.1754

    Article  CAS  Google Scholar 

  8. Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K (2002) Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J Bone Min Res 17:1190–1199. https://doi.org/10.1359/jbmr.2002.17.7.1190

    Article  CAS  Google Scholar 

  9. Kawakatsu M, Kanno S, Gui T, Gai Z, Itoh S, Tanishima H, Oikawa K, Muragaki Y (2011) Loss of Smad3 gives rise to poor soft callus formation and accelerates early fracture healing. Exp Mol Pathol 90:107–115. https://doi.org/10.1016/j.yexmp.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  10. Cheung KS, Sposito N, Stumpf PS, Wilson DI, Sanchez-Elsner T, Oreffo RO (2014) MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS ONE 9:e98063. https://doi.org/10.1371/journal.pone.0098063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaji H, Naito J, Sowa H, Sugimoto T, Chihara K (2006) Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm Metab re 38:740–745. https://doi.org/10.1055/s-2006-955085

    Article  CAS  Google Scholar 

  12. Lin HT, Chen SK, Guo JW, Su IC, Huang CJ, Chien CC, Chang CJ (2019) Dynamic expression of SMAD3 is critical in osteoblast differentiation of PDMCs. Int J Mol Med 43:1085–1093. https://doi.org/10.3892/ijmm.2018.4001

    Article  CAS  PubMed  Google Scholar 

  13. Lou Z, Yang Y, Ren T, Tang S, Peng X, Lu Q, Sun Y, Guo W (2013) Smad3 is the key to transforming growth factor-β1-i-nduced osteoclast differentiation in giant cell tumor of bone. Med Oncol 30:606. https://doi.org/10.1007/s12032-013-0606-8

    Article  CAS  PubMed  Google Scholar 

  14. Xu Z, Greenblatt MB, Yan G, Feng H, Sun J, Lotinun S, Brady N, Baron R, Glimcher LH, Zou W (2017) SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun 8:14570. https://doi.org/10.1038/ncomms14570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoue M, Nagai-Yoshioka Y, Yamasaki R, Kawamoto T, Nishihara T, Ariyoshi W (2022) Mechanisms involved in suppression of osteoclast supportive activity by transforming growth factor-β1 via the ubiquitin-proteasome system. PLoS ONE 17:e0262612. https://doi.org/10.1371/journal.pone.0262612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu S, Ehnert S, Rouß M, Häussling V, Aspera-Werz RH, Chen T, Nussler AK (2018) From the clinical problem to the Basic Research-Co-culture models of Osteoblasts and osteoclasts. Int J Mol Sci 19(8):2284. https://doi.org/10.3390/ijms19082284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, Cabral WA, Hanson EP, Lange E, Cowen EW, Katz J, Roschger P, Klaushofer K, Dale RK, Siegel RM, Bhattacharyya T, Marini JC (2020) Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway. J Exp Med 217:e20191499. https://doi.org/10.1084/jem.20191499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang C, Liang D, Qiu Y, Zhu J, Tang G (2022) Omentin-1 induces osteoblast viability and differentiation via the TGF-β/Smad signaling pathway in osteoporosis. Mol Med Rep 25:132. https://doi.org/10.3892/mmr.2022.12648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang L, Hai Y, Zhou JL (2011) Osteoprotegerin and osteoprotegerin ligand expression during human marrow stromal cell differentiation and their effect on osteoclast formation. Chin Med J (Engl) 124:2033–2037. https://doi.org/10.3760/cma.j.issn.0366-6999.2011.13.020

    Article  CAS  PubMed  Google Scholar 

  20. Tang X, Han J, Meng H, Zhao Y, Wang H, Liu J, Lin L, Zhang D, Li C, Ma C (2016) Downregulation of RANKL and RANKL/osteoprotegerin ratio in human periodontal ligament cells during their osteogenic differentiation. J Periodontal Res 51:125–132. https://doi.org/10.1111/jre.12291

    Article  CAS  PubMed  Google Scholar 

  21. Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL (2000) The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141:4768–4776. https://doi.org/10.1210/endo.141.12.7840

    Article  CAS  PubMed  Google Scholar 

  22. Atkins GJ, Kostakis P, Pan B, Farrugia A, Gronthos S, Evdokiou A, Harrison K, Findlay DM, Zannettino AC (2003) RANKL expression is related to the differentiation state of human osteoblasts. J Bone Min Res 18:1088–1098. https://doi.org/10.1359/jbmr.2003.18.6.1088

    Article  CAS  Google Scholar 

  23. Park HC, Son YB, Lee SL, Rho GJ, Kang YH, Park BW, Byun SH, Hwang SC, Cho IA, Cho YC, Sung IY, Woo DK, Byun JH (2017) Effects of osteogenic-conditioned medium from human periosteum-derived cells on Osteoclast differentiation. Int J Med Sci 14:1389–1401. https://doi.org/10.7150/ijms.21894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, Nissenson RA (2004) PTH differentially regulates expression of RANKL and OPG. J Bone Min Res 19:235–244. https://doi.org/10.1359/JBMR.0301226

    Article  CAS  Google Scholar 

  25. Doi T, Hioki T, Tachi J, Ueda K, Matsushima-Nishiwaki R, Iida H, Ogura S, Kozawa O, Tokuda H (2022) Oncostatin M reduces the synthesis of macrophage-colony stimulating factor stimulated by TGF-β via suppression of p44 /p42 MAP kinase and JNK in osteoblasts. Biomed Res 43:41–51. https://doi.org/10.2220/biomedres.43.41

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Ayoub A, Xiu Y, Yin X, Sanders JO, Mesfin A, Xing L, Yao Z, Boyce BF (2019) TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat Commun 10(1):2795. https://doi.org/10.1038/s41467-019-10677-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K, Watanabe K, Yamada Y (1998) Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 273:27091–27096. https://doi.org/10.1074/jbc.273.42.27091

    Article  CAS  PubMed  Google Scholar 

  28. Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ, Onyia JE (2001) Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF- beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J Biol Chem 276:36241–36250. https://doi.org/10.1074/jbc.M104319200

    Article  CAS  PubMed  Google Scholar 

  29. Adapala NS, Root S, Lorenzo J, Aguila H, Sanjay A (2019) PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF- 1-mediated osteoclast precursor migration. Bone Rep 10:100203. https://doi.org/10.1016/j.bonr.2019.100203

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106. https://doi.org/10.1074/jbc.M611781200

    Article  CAS  PubMed  Google Scholar 

  31. Aoyama E, Kubota S, Khattab HM, Nishida T, Takigawa M (2015) CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG. Bone 73:242–248. https://doi.org/10.1016/j.bone.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature 485:69–74. https://doi.org/10.1038/nature11000

    Article  CAS  PubMed  Google Scholar 

  33. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S (2005) Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105:3793–3801. https://doi.org/10.1182/blood-2004-11-4349

    Article  CAS  PubMed  Google Scholar 

  34. Huo S, Luo Y, Deng R, Liu X, Wang J, Wang L, Zhang B, Wang F, Lu J, Li X (2020) EBV-EBNA1 constructs an immunosuppressive microenvironment for nasopharyngeal carcinoma by promoting the chemoattraction of Treg cells. J Immunother Cancer 8:e001588. https://doi.org/10.1136/jitc-2020-001588

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent KC (2009) Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem 284:17564–17574. https://doi.org/10.1074/jbc.M109.013987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kiwanuka E, Junker JP, Eriksson E (2017) Transforming growth factor β1 regulates the expression of CCN2 in human keratinocytes via Smad-ERK signalling. Int Wound J 14:1006–1018. https://doi.org/10.1111/iwj.12749

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen C, Karray S, Shi S, Jin Y (2015) Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ 22:1654–1664. https://doi.org/10.1038/cdd.2015.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27:535–545. https://doi.org/10.1038/sj.emboj.7601984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia AJ, Tom C, Guemes M, Polanco G, Mayorga ME, Wend K, Miranda-Carboni GA, Krum SA (2013) ERα signaling regulates MMP3 expression to induce FasL cleavage and osteoclast apoptosis. J Bone Min Res 28:283–290. https://doi.org/10.1002/jbmr.1747

    Article  CAS  Google Scholar 

  40. Kovacić N, Lukić IK, Grcević D, Katavić V, Croucher P, Marusić A (2007) The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited limited role in osteoblast and osteoclast apoptosis. J Immunol 178:3379–3389. https://doi.org/10.4049/jimmunol.178.6.3379

    Article  PubMed  Google Scholar 

  41. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A 83:2496–2500. https://doi.org/10.1073/pnas.83.8.2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vargo-Gogola T, Crawford HC, Fingleton B, Matrisian LM (2002) Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Arch Biochem Biophys 408:155–161. https://doi.org/10.1016/s0003-9861(02)00525-8

    Article  CAS  PubMed  Google Scholar 

  43. Liu W, Xu C, Zhao H, Xia P, Song R, Gu J, Liu X, Bian J, Yuan Y, Liu Z (2015) Osteoprotegerin induces apoptosis of osteoclasts and osteoclast precursor cells via the Fas/Fas ligand pathway. PLoS ONE 10:e0142519. https://doi.org/10.1371/journal.pone.0142519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo Z, Li Y, Chen M, Gu Y, Chen Y, Zhao Y, Tang P (2022) Semaphorin3A regulates mitochondrial apoptosis in RAW264.7 cells in vitro. Tissue Cell 75:101711. https://doi.org/10.1016/j.tice.2021.101711

    Article  CAS  PubMed  Google Scholar 

  45. Yan T, Riggs BL, Boyle WJ, Khosla S (2001) Regulation of osteoclastogenesis and RANK expression by TGF-beta1. J Cell Biochem 83:320–325. https://doi.org/10.1002/jcb.1200

    Article  CAS  PubMed  Google Scholar 

  46. Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S (2014) Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Min Res 29:1522–1530. https://doi.org/10.1002/jbmr.2187

    Article  CAS  Google Scholar 

  47. Ma Q, Liang M, Limjunyawong N, Dan Y, Xing J, Li J, Xu J, Dou C (2020) Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone. Theranostics 10:6825–6838. https://doi.org/10.7150/thno.45170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma Q, Liang M, Wu Y, Luo F, Ma Z, Dong S, Xu J, Dou C (2021) Osteoclast-derived apoptotic bodies couple bone resorption and formation in bone remodeling. Bone Res 9:5. https://doi.org/10.1038/s41413-020-00121-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma Q, Liang M, Wu Y, Ding N, Duan L, Yu T, Bai Y, Kang F, Dong S, Xu J, Dou C (2019) Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem 294:11240–11247. https://doi.org/10.1074/jbc.RA119.007625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (grant number 81873320, 82274546, 81973878 and 82205142); The Scientific research project of Wuxi Municipal Health Commission (grant number Q202232); 2020 Jiangsu Province Traditional Chinese Medicine Science and Technology Development Plan Project (grant number YB2020042) and Graduate Research.and Innovation Projects of Jiangsu Province (grant number NO. KYCX22_2061).

Author information

Authors and Affiliations

Authors

Contributions

Design of study were performed by J. Y. and J. W. Implementation of experiment, and data collection were performed by J. Y. and J. X. Data analysis and drafting manuscript were performed by J. Y. and Z. H.Drawing and revising manuscript were performed by Y. S., S. L., H.Y, M. W., Y. R., B. H., Y. G. and Y. M. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianwei Wang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not Applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Hua, Z., Xiao, J. et al. p-Smad3 differentially regulates the cytological behavior of osteoclasts before and after osteoblasts maturation. Mol Biol Rep 51, 525 (2024). https://doi.org/10.1007/s11033-024-09400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09400-0

Keywords

Navigation