Skip to main content
Log in

Improved therapy for clear cell renal cell carcinoma: beta-hydroxybutyrate and quercetin target hypoxia-induced angiogenesis and multidrug resistance

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is a form of kidney cancer characterized by dysregulated angiogenesis and multidrug resistance. Hypoxia-induced tumor progression plays a crucial role in ccRCC pathogenesis. Beta-hydroxybutyrate (BHB) and quercetin (QCT) have shown potential in targeting angiogenesis and drug resistance in various cancer types. This study investigates the combined effects of BHB and QCT in hypoxia-induced Caki-1 cells.

Methods

Caki-1 cells were subjected to normoxic and hypoxic conditions and treated with BHB, QCT, or a combination of both. Cell-viability was assessed using the MTT assay, and mRNA expression levels of key angiogenesis-related genes (HIF-1α/2α, VEGF, Ang-1, Ang-2, and MDR4) were quantified through real-time PCR during 24 and 48 h.

Results

BHB and QCT treatments, either alone or in combination, significantly reduced cell-viability in Caki-1 cells (p < 0.05). Moreover, the combined therapy demonstrated a potential effect in downregulating the expression of angiogenesis-related genes and MDR4 in hypoxia-induced cells, with a marked reduction in HIF-1α/2α, VEGF, Ang-1, and MDR4 expression (p < 0.05). The expression of Ang-2 increases significantly in presence of BHB combined QCT treatment.

Conclusion

This study highlights the promising potential of a combination therapy involving BHB and QCT in mitigating angiogenesis and MDR4 expression in hypoxia-induced ccRCC cells. These findings support further investigation into the underlying mechanisms and warrant clinical studies to evaluate the therapeutic value of this combined treatment for ccRCC patients. This research provides new insights into addressing the challenges posed by angiogenesis and drug resistance in ccRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Information and resources availability

This article contains all data created and examined throughout this investigation. The corresponding author will provide datasets used or analyzed during the current work upon reasonable request.

Abbreviations

RCC:

Renal cell carcinoma

ccRCC:

Clear cell renal cell carcinoma

HIFα:

Hypoxia-inducible factor alpha

VHL:

Von Hippel-Lindau protein

VEGF:

Vascular endothelial growth factor

Ang-1:

Angiopoietin-1

MDR:

Multidrug resistance

EMT:

Epithelial–mesenchymal transition

BHB:

Beta-hydroxybutyrate

QCT:

Quercetin

KD:

Ketogenic diet

CMap:

Connectivity Map

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

DMSO:

Dimethyl sulfoxide

cDNA:

Complementary DNA

RT-qPCR:

Real-time reverse transcription-polymerase chain reaction

SD:

Standard deviation

ANOVA:

Analysis of variance

PTMs:

Posttranslational modifications

ACAT1:

Acetyl-CoA acyltransferase 1

GSC:

Glioma stem cells

ROS:

Reactive oxygen species

References

  1. Li Y, Lih TM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJ, Clark DJ, Kołodziejczak I, Hong R, Chen S, Zhao Y, Chugh S, Caravan W, Naseral Deen N, Hosseini N, Newton CJ, Krug K, Xu Y, Cho KC, Hu Y, Zhang Y, Kumar-Sinha C, Ma W, Calinawan A, Wyczalkowski MA, Wendl MC, Wang Y, Guo S, Zhang C, Le A, Dagar A, Hopkins A, Cho H, Leprevost FDV, Jing X, Teo GC, Liu W, Reimers MA, Pachynski R, Lazar AJ, Chinnaiyan AM, Van Tine BA, Zhang B, Rodland KD, Getz G, Mani DR, Wang P, Chen F, Hostetter G, Thiagarajan M, Linehan WM, Fenyö D, Jewell SD, Omenn GS, Mehra R, Wiznerowicz M, Robles AI, Mesri M, Hiltke T, An E, Rodriguez H, Chan DW, Ricketts CJ, Nesvizhskii AI, Zhang H, Ding L (2023) Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 41:139–163.e117. https://doi.org/10.1016/j.ccell.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  2. Padala SA, Kallam A (2023) Clear cell renal carcinoma. StatPearls Publishing LLC, Treasure Island, FL

    Google Scholar 

  3. Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells 10:1715. https://doi.org/10.3390/cells10071715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H (2018) How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat 38:1–11. https://doi.org/10.1016/j.drup.2018.03.001

    Article  PubMed  Google Scholar 

  5. Wicks EE, Semenza GL (2022) Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 132:e159839. https://doi.org/10.1172/jci159839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaelin WG Jr (2022) Von Hippel-Lindau disease: insights into oxygen sensing, protein degradation, and cancer. J Clin Invest 132:e162480. https://doi.org/10.1172/jci162480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shirole NH, Kaelin WG Jr (2023) von-Hippel Lindau and hypoxia-inducible factor at the center of renal cell carcinoma biology. Hematol Oncol Clin North Am 37:809–825. https://doi.org/10.1016/j.hoc.2023.04.011

    Article  PubMed  Google Scholar 

  8. Ma Y, Joyce A, Brandenburg O, Saatchi F, Stevens C, Toffessi Tcheuyap V, Christie A, Do QN, Fatunde O, Macchiaroli A, Wong SC, Woolford L, Yousuf Q, Miyata J, Carrillo D, Onabolu O, McKenzie T, Mishra A, Hardy T, He W, Li D, Ivanishev A, Zhang Q, Pedrosa I, Kapur P, Schluep T, Kanner SB, Hamilton J, Brugarolas J (2022) HIF2 inactivation and tumor suppression with a tumor-directed RNA-silencing drug in mice and humans. Clin Cancer Res 28:5405–5418. https://doi.org/10.1158/1078-0432.Ccr-22-0963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choueiri TK, Kaelin WG Jr (2020) Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med 26:1519–1530. https://doi.org/10.1038/s41591-020-1093-z

    Article  CAS  PubMed  Google Scholar 

  10. Kraljević M, Marijanović I, Barbarić M, Sokolović E, Bukva M, Cerić T, Buhovac T (2023) Prognostic and predictive significance of VEGF, CD31, and Ang-1 in patients with metastatic clear cell renal cell carcinoma treated with first-line sunitinib. Biomol Biomed 23:161–169. https://doi.org/10.17305/bjbms.2022.7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baldewijns MM, Thijssen VL, Van den Eynden GG, Van Laere SJ, Bluekens AM, Roskams T, van Poppel H, De Bruïne AP, Griffioen AW, Vermeulen PB (2007) High-grade clear cell renal cell carcinoma has a higher angiogenic activity than low-grade renal cell carcinoma based on histomorphological quantification and qRT-PCR mRNA expression profile. Br J Cancer 96:1888–1895. https://doi.org/10.1038/sj.bjc.6603796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu J, Zhang Y, Han Z, Gao L, Cui J, Sun Y, Niu Y, You B, Huang CP, Chang C, Wang X, Yeh S (2020) Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC. Cell Death Dis 11:367. https://doi.org/10.1038/s41419-020-2486-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erin N, Grahovac J, Brozovic A, Efferth T (2020) Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 53:100715. https://doi.org/10.1016/j.drup.2020.100715

    Article  PubMed  Google Scholar 

  14. Colavita JPM, Todaro JS, de Sousa M, May M, Gómez N, Yaneff A, Di Siervi N, Aguirre MV, Guijas C, Ferrini L, Davio C, Rodríguez JP (2020) Multidrug resistance protein 4 (MRP4/ABCC4) is overexpressed in clear cell renal cell carcinoma (ccRCC) and is essential to regulate cell proliferation. Int J Biol Macromol 161:836–847. https://doi.org/10.1016/j.ijbiomac.2020.06.106

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Li CL, Xu QQ, Cheng D, Liu KD, Sun ZQ (2021) Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol Res Pract 222:153455. https://doi.org/10.1016/j.prp.2021.153455

    Article  CAS  PubMed  Google Scholar 

  16. Møller N (2020) Ketone body, 3-hydroxybutyrate: minor metabolite—major medical manifestations. J Clin Endocrinol Metab 105(9):dgaa370. https://doi.org/10.1210/clinem/dgaa370

    Article  PubMed  Google Scholar 

  17. Zou K, Hu Y, Li M, Wang H, Zhang Y, Huang L, Xie Y, Li S, Dai X, Xu W, Ke Z, Gong S, Wang Y (2019) Potential role of HMGCS2 in tumor angiogenesis in colorectal cancer and its potential use as a diagnostic marker. Can J Gastroenterol Hepatol 2019:8348967. https://doi.org/10.1155/2019/8348967

    Article  PubMed  PubMed Central  Google Scholar 

  18. Newman JC, Verdin E (2017) β-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr 37:51–76. https://doi.org/10.1146/annurev-nutr-071816-064916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dmitrieva-Posocco O, Wong AC, Lundgren P, Golos AM, Descamps HC, Dohnalová L, Cramer Z, Tian Y, Yueh B, Eskiocak O, Egervari G, Lan Y, Liu J, Fan J, Kim J, Madhu B, Schneider KM, Khoziainova S, Andreeva N, Wang Q, Li N, Furth EE, Bailis W, Kelsen JR, Hamilton KE, Kaestner KH, Berger SL, Epstein JA, Jain R, Li M, Beyaz S, Lengner CJ, Katona BW, Grivennikov SI, Thaiss CA, Levy M (2022) β-Hydroxybutyrate suppresses colorectal cancer. Nature 605:160–165. https://doi.org/10.1038/s41586-022-04649-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woolf EC, Syed N, Scheck AC (2016) Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy. Front Mol Neurosci 9:122. https://doi.org/10.3389/fnmol.2016.00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zou Y, Fineberg S, Pearlman A, Feinman RD, Fine EJ (2020) The effect of a ketogenic diet and synergy with rapamycin in a mouse model of breast cancer. PLoS ONE 15:e0233662. https://doi.org/10.1371/journal.pone.0233662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woolf EC, Curley KL, Liu Q, Turner GH, Charlton JA, Preul MC, Scheck AC (2015) The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential and vascular permeability in a mouse glioma model. PLoS ONE 10:e0130357. https://doi.org/10.1371/journal.pone.0130357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alizadeh SR, Ebrahimzadeh MA (2022) Quercetin derivatives: drug design, development, and biological activities, a review. Eur J Med Chem 229:114068. https://doi.org/10.1016/j.ejmech.2021.114068

    Article  CAS  PubMed  Google Scholar 

  24. Lee DH, Lee YJ (2008) Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis. J Cell Biochem 105:546–553. https://doi.org/10.1002/jcb.21851

    Article  CAS  PubMed  Google Scholar 

  25. Xiao GF, Yan X, Chen Z, Zhang RJ, Liu TZ, Hu WL (2020) Identification of a novel immune-related prognostic biomarker and small-molecule drugs in clear cell renal cell carcinoma (ccRCC) by a merged microarray-acquired dataset and TCGA database. Front Genet 11:810. https://doi.org/10.3389/fgene.2020.00810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu J, Tan P, Ishihara M, Bayley NA, Schokrpur S, Reynoso JG, Zhang Y, Lim RJ, Dumitras C, Yang L, Dubinett SM, Jat PS, Van Snick J, Huang J, Chin AI, Prins RM, Graeber TG, Xu H, Wu L (2023) Tumor heterogeneity in VHL drives metastasis in clear cell renal cell carcinoma. Signal Transduct Target Ther 8:155. https://doi.org/10.1038/s41392-023-01362-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I (2022) Molecular mechanisms for ketone body metabolism, signaling functions, and therapeutic potential in cancer. Nutrients 14(22):4932. https://doi.org/10.3390/nu14224932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrere G, Tidjani Alou M, Liu P, Goubet AG, Fidelle M, Kepp O, Durand S, Iebba V, Fluckiger A, Daillère R, Thelemaque C, Grajeda-Iglesias C, Alves Costa Silva C, Aprahamian F, Lefevre D, Zhao L, Ryffel B, Colomba E, Arnedos M, Drubay D, Rauber C, Raoult D, Asnicar F, Spector T, Segata N, Derosa L, Kroemer G, Zitvogel L (2021) Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6:e145207. https://doi.org/10.1172/jci.insight.145207

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cui X, Yun X, Sun M, Li R, Lyu X, Lao Y, Qin X, Yu W (2023) HMGCL-induced β-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility. Hepatol Int 17:377–392. https://doi.org/10.1007/s12072-022-10459-9

    Article  PubMed  Google Scholar 

  30. Dowis K, Banga S (2021) The potential health benefits of the ketogenic diet: a narrative review. Nutrients 13:1654. https://doi.org/10.3390/nu13051654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G, Chen Y, Xia C, Peng C, Ruan H, Kirkey M, Wang D, Jensen LM, Kwon OK, Lee S, Pletcher SD, Tan M, Lombard DB, White KP, Zhao H, Li J, Roeder RG, Yang X, Zhao Y (2016) Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol Cell 62:194–206. https://doi.org/10.1016/j.molcel.2016.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meng FD, Li Y, Tian X, Ma P, Sui CG, Fu LY, Jiang YH (2015) Synergistic effects of snail and quercetin on renal cell carcinoma Caki-2 by altering AKT/mTOR/ERK1/2 signaling pathways. Int J Clin Exp Pathol 8:6157–6168

    PubMed  PubMed Central  Google Scholar 

  33. Vuong L, Kotecha RR, Voss MH, Hakimi AA (2019) Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov 9:1349–1357. https://doi.org/10.1158/2159-8290.Cd-19-0499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamma R, Rutigliano M, Lucarelli G, Annese T, Ruggieri S, Cascardi E, Napoli A, Battaglia M, Ribatti D (2019) Microvascular density, macrophages, and mast cells in human clear cell renal carcinoma with and without bevacizumab treatment. Urol Oncol 37:355.e311–355.e319. https://doi.org/10.1016/j.urolonc.2019.01.025

    Article  CAS  Google Scholar 

  35. Netti GS, Lucarelli G, Spadaccino F, Castellano G, Gigante M, Divella C, Rocchetti MT, Rascio F, Mancini V, Stallone G, Carrieri G, Gesualdo L, Battaglia M, Ranieri E (2020) PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. Aging (Albany NY) 12:7585–7602. https://doi.org/10.18632/aging.103169

    Article  PubMed  Google Scholar 

  36. Mao T, Qin F, Zhang M, Li J, Li J, Lai M (2023) Elevated serum β-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene 42:1889–1899. https://doi.org/10.1038/s41388-023-02700-y

    Article  CAS  PubMed  Google Scholar 

  37. Chen L, Peng T, Luo Y, Zhou F, Wang G, Qian K, Xiao Y, Wang X (2019) ACAT1 and metabolism-related pathways are essential for the progression of clear cell renal cell carcinoma (ccRCC), as determined by co-expression network analysis. Front Oncol 9:957. https://doi.org/10.3389/fonc.2019.00957

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu R, Wang K, Rizzi JP, Huang H, Grina JA, Schlachter ST, Wang B, Wehn PM, Yang H, Dixon DD, Czerwinski RM, Du X, Ged EL, Han G, Tan H, Wong T, Xie S, Josey JA, Wallace EM (2019) 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J Med Chem 62:6876–6893. https://doi.org/10.1021/acs.jmedchem.9b00719

    Article  CAS  PubMed  Google Scholar 

  39. Choueiri TK, Bauer TM, Papadopoulos KP, Plimack ER, Merchan JR, McDermott DF, Michaelson MD, Appleman LJ, Thamake S, Perini RF, Zojwalla NJ, Jonasch E (2021) Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat Med 27:802–805. https://doi.org/10.1038/s41591-021-01324-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, Campbell S, Welford SM (2017) HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun 8:1769. https://doi.org/10.1038/s41467-017-01965-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji CC, Hu YY, Cheng G, Liang L, Gao B, Ren YP, Liu JT, Cao XL, Zheng MH, Li SZ, Wan F, Han H, Fei Z (2020) A ketogenic diet attenuates proliferation and stemness of glioma stem-like cells by altering metabolism resulting in increased ROS production. Int J Oncol 56:606–617. https://doi.org/10.3892/ijo.2019.4942

    Article  CAS  PubMed  Google Scholar 

  42. Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, Chen G, Luo J, Shi X (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS ONE 7:e47516. https://doi.org/10.1371/journal.pone.0047516

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49:678–697. https://doi.org/10.1111/cpr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marques MB, Machado AP, Santos PA, Carrett-Dias M, Araújo GS, da Silva Alves B, de Oliveira BS, da Silva Júnior FMR, Dora CL, Cañedo AD, Filgueira D, Fernandes ESE, de Souza Votto AP (2021) Anti-MDR effects of quercetin and its nanoemulsion in multidrug-resistant human leukemia cells. Anticancer Agents Med Chem 21:1911–1920. https://doi.org/10.2174/1871520621999210104200722

    Article  CAS  PubMed  Google Scholar 

  45. Chen Z, Huang C, Ma T, Jiang L, Tang L, Shi T, Zhang S, Zhang L, Zhu P, Li J, Shen A (2018) Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine 43:37–45. https://doi.org/10.1016/j.phymed.2018.03.040

    Article  CAS  PubMed  Google Scholar 

  46. Li SZ, Li K, Zhang JH, Dong Z (2013) The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anticancer Agents Med Chem 13:352–355. https://doi.org/10.2174/1871520611313020020

    Article  CAS  PubMed  Google Scholar 

  47. di Meo NA, Lasorsa F, Rutigliano M, Milella M, Ferro M, Battaglia M, Ditonno P, Lucarelli G (2023) The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. Expert Rev Mol Diagn 23:297–313. https://doi.org/10.1080/14737159.2023.2195553

    Article  CAS  PubMed  Google Scholar 

  48. Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, Bettocchi C, Ditonno P, Battaglia M (2019) Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 19:397–407. https://doi.org/10.1080/14737159.2019.1607729

    Article  CAS  PubMed  Google Scholar 

  49. Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Lepore Signorile M, Grossi V, Sanese P, Napoli A, Maiorano E, Bianchi C, Perego RA, Ferro M, Ranieri E, Serino G, Bell LN, Ditonno P, Simone C, Battaglia M (2018) Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging (Albany NY) 10:3957–3985. https://doi.org/10.1863/aging.101685

    Article  CAS  PubMed  Google Scholar 

  50. Xiao W, Xiong Z, Xiong W, Yuan C, Xiao H, Ruan H, Song Z, Wang C, Bao L, Cao Q, Wang K, Cheng G, Xu T, Tong J, Zhou L, Hu W, Ru Z, Liu D, Yang H, Zhang X, Chen K (2019) Melatonin/PGC1A/UCP1 promotes tumor slimming and represses tumor progression by initiating autophagy and lipid browning. J Pineal Res 67:e12607. https://doi.org/10.1111/jpi.12607

    Article  CAS  PubMed  Google Scholar 

  51. Yu P, Yang Z, Lu H, Jin X, Yang X, Qi Z (2022) Quercetin may improve fat graft survival by promoting fat browning peripherally. Aesthetic Plast Surg 46:2517–2525. https://doi.org/10.1007/s00266-022-02857-z

    Article  PubMed  Google Scholar 

  52. Kim S, Park DH, Lee SH, Kwak HB, Kang JH (2023) Contribution of high-intensity interval exercise in the fasted state to fat browning: potential roles of lactate and β-hydroxybutyrate. Med Sci Sports Exerc 55:1160–1171. https://doi.org/10.1249/mss.0000000000003136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All experiments, statistical analysis, and figure preparation were conducted by NM, RN, SAM, FA, MO. The initial draft of manuscript was written by NM, SD, and MS. All tests were set up by MHM and second draft of manuscript was written by MHM. A final manuscript proof was completed by SD and MHM who also contributed more funds to the project. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Mohammad Hassan Maleki or Sanaz Dastghaib.

Ethics declarations

Conflict of interest

Authors affirm that they don’t have competitive interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadipoor, N., Naiebi, R., Mazhari, S.A. et al. Improved therapy for clear cell renal cell carcinoma: beta-hydroxybutyrate and quercetin target hypoxia-induced angiogenesis and multidrug resistance. Mol Biol Rep 51, 379 (2024). https://doi.org/10.1007/s11033-024-09355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09355-2

Keywords

Navigation