Skip to main content

Advertisement

Log in

Exploring the potential of EphA2 receptor signaling pathway: a comprehensive review in cancer treatment

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The protein encoded by the ephrin type-A receptor 2 (EphA2) gene is a member of the ephrin receptor subfamily of the receptor tyrosine kinase family (RTKs). Eph receptors play a significant role in various biological processes, particularly cancer progression, development, and pathogenesis. They have been observed to regulate cancer cell growth, migration, invasion, tumor development, invasiveness, angiogenesis, and metastasis. To target EphA2 activity, various molecular, genetic, biochemical, and pharmacological strategies have been extensively tested in laboratory cultures and animal models. Notably, drugs, such as dasatinib, initially designed to target the kinase family, have demonstrated an additional capability to target EphA2 activity. Additionally, a novel monoclonal antibody named EA5 has emerged as a promising option to counteract the effects of EphA2 overexpression and restore tamoxifen sensitivity in EphA2-transfected MCF-7 cells during in vitro experiments. This antibody mimicked the binding of Ephrin A to EphA2. These methods offer potential avenues for inhibiting EphA2 activity, which could significantly decelerate breast cancer progression and restore sensitivity to certain drugs. This review article comprehensively covers EphA2’s involvement in multiple malignancies, including ovarian, colorectal, breast, lung, glioma, and melanoma. Furthermore, we discuss the structure of EphA2, the Eph-Ephrin signaling pathway, various EphA2 inhibitors, and the mechanisms of EphA2 degradation. This article provides an extensive overview of EphA2’s vital role in different types of cancers and outlines potential therapeutic approaches to target EphA2, shedding light on the underlying molecular mechanisms that make it an attractive target for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

There is no supplementary data available.

References

  1. Chow AY (2010) Cell cycle control by oncogenes and Tumor suppressors: driving the Transformation of normal cells into cancerous cells. Nat Educ. 3(9).

  2. Brantley-Sieders DM (2012) Clinical relevance of ephs and ephrins in cancer: lessons from breast, colorectal, and lung cancer profiling. Semin Cell Dev Biol 23(1):102–108

    Article  CAS  PubMed  Google Scholar 

  3. Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M (2020) Targeting EphA2 in cancer. J Hematol Oncol 13(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barquilla A, Pasquale EB (2015) Eph receptors and ephrins: Therapeutic opportunities. Annu Rev Pharmacol Toxicol 55(1):465–487

    Article  CAS  PubMed  Google Scholar 

  5. Wykosky J, Debinski W (2008) The EphA2 receptor and EphrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 6(12):1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adu-Gyamfi EA, Czika A, Liu T-H, Gorleku PN, Fondjo LA, Djankpa FT et al (2021) Ephrin and eph receptor signaling in female reproductive physiology and pathology†. Biol Reprod 104(1):71–82

    Article  PubMed  Google Scholar 

  7. Zhou Y, Sakurai H (2017) Emerging and diverse functions of the EphA2 noncanonical pathway in Cancer Progression. Biol Pharm Bull 40(10):1616–1624. https://doi.org/10.1248/bpb.b17-00446

    Article  CAS  PubMed  Google Scholar 

  8. Barton WA, Dalton AC, Seegar TCM, Himanen JP, Nikolov DB (2014) Tie2 and eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 6(3):a009142–a009142. https://doi.org/10.1101/cshperspect.a009142

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Yennawar N, Hankey PA (2014) Autoinhibition of the Ron receptor tyrosine kinase by the juxtamembrane domain. Cell Communication Signaling: CCS 12(1):28. https://doi.org/10.1186/1478-811X-12-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Falivelli G, Lisabeth EM, de la Torre ER, Perez-Tenorio G, Tosato G, Salvucci O, Pasquale EB (2013) Attenuation of eph receptor kinase activation in Cancer cells by Coexpressed Ephrin Ligands. PLoS ONE 8(11):e81445. https://doi.org/10.1371/journal.pone.0081445

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW (2012) Complex expression patterns of eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer 48(5):753–762. https://doi.org/10.1016/j.ejca.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Van Landeghem L, Mahé MM, Teusan R, Léger J, Guisle I, Houlgatte R, Neunlist M (2009) Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genomics 10(1):507. https://doi.org/10.1186/1471-2164-10-507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Plum PS, Warnecke-Eberz U, Dhaouadi O, Alakus H, Drebber U, Metzger R, Prenzel KL, Hölscher AH, Bollschweiler E (2015) Molecular markers predicting lymph node metastasis in early esophageal cancer. Histol Histopathol 30(10):1193–1202. https://doi.org/10.14670/HH-11-618

    Article  CAS  PubMed  Google Scholar 

  14. Kurose h, ueda (2019) k., kondo, r., ogasawara, s., kusano, h., sanada, s., naito, y., nakiri, m., nishihara, k., kakuma, t., akiba, j., igawa, t., & yano, h. Elevated expression of epha2 is associated with poor prognosis after radical prostatectomy in prostate cancer. Anticancer research 39(11):6249–6257. https://doi.org/10.21873/anticanres.13834

  15. Zhou L, Lu X, Zhang B, Shi Y, Li Z (2021) EphA2 as a new target for breast cancer and its potential clinical application. Int J Clin Exp Pathol, 14(4)

  16. Lindberg RA, Hunter T (1990) cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 10(12):6316–6324

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomez-Soler M, Pasquale EB (2021) Eph receptors and Ephrins. Encyclopedia of Molecular Pharmacology. Springer International Publishing, Cham, pp 615–628

    Chapter  Google Scholar 

  18. Signaling Crosstalk. In (2013) Encyclopedia of systems Biology. Springer New York, New York, NY, pp 1938–1938

    Google Scholar 

  19. Miao H, Li D-Q, Mukherjee A, Guo H, Petty A, Cutter J et al (2009) EphA2 mediates ligand-dependent inhibition and ligand-independent Promotion of Cell Migration and Invasion via a reciprocal Regulatory Loop with Akt. Cancer Cell 16(1):9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, Sakurai H (2017) Emerging and diverse functions of the EphA2 noncanonical pathway in Cancer Progression. Biol Pharm Bull 40(10):1616–1624

    Article  CAS  PubMed  Google Scholar 

  21. Nakamoto M, Bergemann AD (2002) Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech 59(1):58–67

    Article  CAS  PubMed  Google Scholar 

  22. Brantley-Sieders DM, Zhuang G, Hicks D, Fang W, Bin, Hwang Y, Cates JMM et al (2008) The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 118(1):64–78

    Article  CAS  PubMed  Google Scholar 

  23. Xu N-J, Henkemeyer M (2012) Ephrin reverse signaling in axon guidance and synaptogenesis. Semin Cell Dev Biol 23(1):58–64

    Article  CAS  PubMed  Google Scholar 

  24. Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y et al (2011) Eph/Ephrin Profiling in Human Breast Cancer Reveals Significant Associations between Expression Level and Clinical Outcome. Zhang L, editor. PLoS One. 6(9):e24426. A

  25. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 62(10)

  26. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52

    Article  CAS  PubMed  Google Scholar 

  27. De Robertis M, Loiacono L, Fusilli C, Poeta ML, Mazza T, Sanchez M, Marchionni L, Signori E, Lamorte G, Vescovi AL, Garcia-Foncillas J, Fazio VM (2017) Dysregulation of EGFR pathway in EphA2 cell subpopulation significantly associates with poor prognosis in Colorectal Cancer. Clin Cancer Res 23(1):159–170. https://doi.org/10.1158/1078-0432.CCR-16-0709

    Article  CAS  PubMed  Google Scholar 

  28. Shi X, Lingrak R, Cuizon C, Toth P, Zheng J, Smith A et al (2020) Functional oligomerization of the EphA2 receptor tyrosine kinase. Biophys J 118(3):97a

    Article  Google Scholar 

  29. D’Addario G, Felip E (2009) Non-small-cell lung cancer: ESMO Clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 20(SUPPL 4):iv68–70

    Article  Google Scholar 

  30. Kinch MS, Moore MB, Harpole DH (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res. 9(2)

  31. Faoro L, Singleton PA, Cervantes GM, Lennon FE, Choong NW, Kanteti R et al (2010) EphA2 mutation in lung squamous cell Carcinoma promotes increased cell survival, Cell Invasion, focal adhesions, and mammalian target of Rapamycin activation. J Biol Chem 285(24):18575–18585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J (2014) JNK Signaling mediates EPHA2-Dependent Tumor Cell Proliferation, Motility, and Cancer Stem cell–like properties in non–small cell Lung Cancer. Cancer Res 74(9):2444–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cary KC, Cooperberg MR (2013) Biomarkers in prostate cancer surveillance and screening: past, present, and future. Ther Adv Urol 5(6):318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng G, Hu Z, Kinch MS, Pan C-X, Flockhart DA, Kao C et al (2003) High-level expression of EphA2 receptor tyrosine kinase in Prostatic Intraepithelial Neoplasia. Am J Pathol 163(6):2271–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderton M, van der Meulen E, Blumenthal MJ, Schäfer G (2021) The role of the eph receptor family in Tumorigenesis. Cancers (Basel) 13(2):206

    Article  CAS  PubMed  Google Scholar 

  36. Parri M, Buricchi F, Giannoni E, Grimaldi G, Mello T, Raugei G et al (2007) EphrinA1 activates a Src/Focal Adhesion Kinase-Mediated Motility Response Leading to rho-dependent Actino/Myosin contractility. J Biol Chem 282(27):19619–19628

    Article  CAS  PubMed  Google Scholar 

  37. Buricchi F, Giannoni E, Grimaldi G, Parri M, Raugei G, Ramponi G et al (2007) Redox Regulation of Ephrin/Integrin cross-talk. Cell Adh Migr 1(1):33–42

    Article  PubMed  PubMed Central  Google Scholar 

  38. Salem AF, Gambini L, Billet S, Sun Y, Oshiro H, Zhao M, Hoffman RM, Bhowmick NA, Pellecchia M (2020) Prostate cancer metastases are strongly inhibited by agonistic EPHA2 ligands in an orthotopic mouse model. Cancers 12(10). https://doi.org/10.3390/cancers12102854

  39. Li J-Y, Xiao T, Yi H-M, Yi H, Feng J, Zhu J-F et al (2019) S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties. Cancer Lett 444:162–174

    Article  CAS  PubMed  Google Scholar 

  40. Hamaoka Y, Negishi M, Katoh H (2016) EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal 28(8):937–945

    Article  CAS  PubMed  Google Scholar 

  41. Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL et al (2012) The EphA2 receptor drives Self-Renewal and Tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22(6):765–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang S, Yu L, Ling G, Xiao S, Sun X, Song Z et al (2012) Vasculogenic mimicry and its clinical significance in medulloblastoma. Cancer Biol Ther 13(5):341–348

    Article  CAS  PubMed  Google Scholar 

  43. Allemani C, Rachet B, Weir HK, Richardson LC, Lepage C, Faivre J et al (2013) Colorectal cancer survival in the USA and Europe: a CONCORD high-resolution study. BMJ Open 3(9):e003055

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kataoka H, Igarashi H, Kanamori M, Ihara M, Wang J-D, Wang Y-J et al (2004) Correlation of EPHA2 overexpression with high microvessel count in human primary colorectal cancer. Cancer Sci 95(2):136–141

    Article  CAS  PubMed  Google Scholar 

  45. Beauchemin N, Arabzadeh A (2013) Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32(3–4):643–671

    Article  CAS  PubMed  Google Scholar 

  46. Kim WM, Huang Y-H, Gandhi A, Blumberg RS (2019) CEACAM1 structure and function in immunity and its therapeutic implications. Semin Immunol 42:101296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arabzadeh A, McGregor K, Breton V, Van Der Kraak L, Akavia UD, Greenwood CMT et al (2017) EphA2 signaling is impacted by carcinoembryonic antigen cell adhesion molecule 1-L expression in colorectal cancer liver metastasis in a cell context-dependent manner. Oncotarget 8(61):104330–104346

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wu Y-M, Liu C-H, Huang M-J, Lai H-S, Lee P-H, Hu R-H et al (2013) C1GALT1 enhances proliferation of Hepatocellular Carcinoma Cells via modulating MET glycosylation and dimerization. Cancer Res 73(17):5580–5590

    Article  CAS  PubMed  Google Scholar 

  49. Lu C, Shahzad MMK, Wang H, Landen CN, Kim SW, Allen J et al (2008) EphA2 overexpression promotes ovarian cancer growth. Cancer Biol Ther 7(7):1098–1103

    Article  CAS  PubMed  Google Scholar 

  50. Liu S-Y, Shun C-T, Hung K-Y, Juan H-F, Hsu C-L, Huang M-C et al (2016) Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget 7(10):11251–11262

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang M-J, Hu R-H, Chou C-H, Hsu C-L, Liu Y-W, Huang J et al (2015) Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget 6(8):5650–5665

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yuan W, Chen Z, Chen Z, Wu S, Guo J, Ge J et al (2012) Silencing of EphA2 inhibits invasion of human gastric cancer SGC-7901 cells in vitro and in vivo. Neoplasma 59(01):105–113

    Article  CAS  PubMed  Google Scholar 

  53. Harb OA, Atwa HA, Haggag R, Shorbagy S, El, Abdelaziz LA, Balata SA et al (2017) The value of HER2 neu and EphA2 expressions in gastric adenocarcinoma prognosis. J Gastrointest Dig Syst. 07(02)

  54. Hossain A, Khan HTA (2016) Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components. J Appl Stat 43(14):2538–2549

    Article  MathSciNet  Google Scholar 

  55. Buettner R, Mesa T, Vultur A, Lee F, Jove R (2008) Inhibition of src family kinases with Dasatinib Blocks Migration and Invasion of Human Melanoma Cells. Mol Cancer Res 6(11):1766–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang Q, Jorgensen C, Pawson T, Hedley DW (2008) Effects of Dasatinib on EphA2 receptor tyrosine kinase activity and downstream signaling in pancreatic cancer. Br J Cancer 99(7):1074–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amato KR, Wang S, Tan L, Hastings AK, Song W, Lovly CM et al (2016) EPHA2 blockade overcomes Acquired Resistance to EGFR kinase inhibitors in Lung Cancer. Cancer Res 76(2):305–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tognolini M, Incerti M, Hassan-Mohamed I, Giorgio C, Russo S, Bruni R et al (2012) Structure-activity relationships and mechanism of action of eph-ephrin antagonists: Interaction of Cholanic Acid with the EphA2 receptor. ChemMedChem 7(6):1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tognolini M, Incerti M, Pala D, Russo S, Castelli R, Hassan-Mohamed I et al (2014) Target Hopping as a useful Tool for the identification of Novel EphA2 protein-protein antagonists. ChemMedChem 9(1):67–72

    Article  CAS  PubMed  Google Scholar 

  60. Noberini R, De SK, Zhang Z, Wu B, Raveendra-Panickar D, Chen V et al (2011) A disalicylic acid-Furanyl Derivative inhibits ephrin binding to a subset of eph receptors. Chem Biol Drug Des 78(4):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, Colapietro A et al (2018) UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget 9(36):24347–24363

    Article  PubMed  PubMed Central  Google Scholar 

  62. Petty A, Myshkin E, Qin H, Guo H, Miao H, Tochtrop GP et al (2012) A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration In Vitro and Prostate Cancer Metastasis In Vivo. Ling MT, editor. PLoS One. 7(8):e42120

  63. Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ (2020) The role of eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 29(6):567–582

    Article  CAS  PubMed  Google Scholar 

  64. Nelson H (1997) Proliferating cell nuclear antigen expression and its relationship to malignancy potential in invasive colorectal carcinomas, vol 40. Diseases of the Colon and Rectum

  65. Colapietro A, Gravina GL, Petragnano F, Fasciani I, Scicchitano BM, Beirinckx F et al (2020) Antitumorigenic effects of inhibiting ephrin receptor kinase signaling by GLPG1790 against Colorectal Cancer Cell Lines in Vitro and in vivo. J Oncol 2020:1–16

    Article  Google Scholar 

  66. Duggineni S, Mitra S, Lamberto I, Han X, Xu Y, An J et al (2013) Design and synthesis of potent bivalent peptide agonists targeting the EphA2 receptor. ACS Med Chem Lett 4(3):344–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patwardhan PP, Ivy KS, Musi E, de Stanchina E, Schwartz GK (2016) Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent antitumor activity in preclinical models of sarcoma. Oncotarget 7(4):4093–4109

    Article  PubMed  Google Scholar 

  68. Chiang JYL, Ferrell JM (2020) Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Liver Physiol 318(3):G554–G573

    Google Scholar 

  69. Zhang T, Li J, Ma X, Yang Y, Sun W, Jin W et al (2018) Corrigendum to ‘Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer’ [EBioMedicine 31 276–286]. EBioMedicine. 2020;52:102629

  70. Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T et al (1994) Ligands for EPH-Related receptor tyrosine kinases that require membrane attachment or clustering for activity. Sci (80-) 266(5186):816–819

    Article  ADS  CAS  Google Scholar 

  71. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Ligation of EphA2 by ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 320(4):1096–1102

    Article  CAS  PubMed  Google Scholar 

  72. Merritt WM, Kamat AA, Hwang J-Y, Bottsford-Miller J, Lu C, Lin YG et al (2010) Clinical and biological impact of EphA2 overexpression and angiogenesis in endometrial cancer. Cancer Biol Ther 10(12):1306–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Landen CN, Lu C, Han LY, Coffman KT, Bruckheimer E, Halder J et al (2006) Efficacy and Antivascular effects of EphA2 Reduction with an agonistic antibody in Ovarian Cancer. JNCI J Natl Cancer Inst 98(21):1558–1570

    Article  CAS  PubMed  Google Scholar 

  74. Coffman KT, Hu M, Carles-Kinch K, Tice D, Donacki N, Munyon K et al (2003) Differential EphA2 Epitope Display on normal versus malignant cells. Cancer Res. 63(22)

  75. Hasegawa J, Sue M, Yamato M, Ichikawa J, Ishida S, Shibutani T et al (2016) Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol Ther 17(11):1158–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakamoto A, Kato K, Hasegawa T (2018) An agonistic antibody to EPHA2 exhibits Antitumor effects on Human Melanoma cells. Anticancer Res 38(6):3273–3282

    Article  CAS  PubMed  Google Scholar 

  77. Udayakumar D, Zhang G, Ji Z, Njauw C-N, Mroz P, Tsao H (2011) Epha2 is a critical oncogene in melanoma. Oncogene 30(50):4921–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Margaryan NV, Strizzi L, Abbott DE, Seftor EA, Rao MS, Hendrix MJC et al (2009) EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol Ther. 8(3)

  79. Zhu Y, Zheng B, Wang H, Chen L (2017) New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38(5):614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu X, Li Y, Wu Y, Wang M, Lu Y, Fang Z et al (2023) Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer. Redox Biol 59:102564

    Article  CAS  PubMed  Google Scholar 

  81. Morgillo F, Martinelli E, Troiani T, Orditura M, de Vita F, Ciardiello F (2011) Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors. PLoS ONE. ;6(12)

  82. D’Amato V, Raimondo L, Formisano L, Giuliano M, De Placido S, Rosa R et al (2015) Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev 41(10):877–883

    Article  PubMed  Google Scholar 

  83. PJ M, Lapatinib SG (2008) : A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 30(8)

Download references

Acknowledgements

The authors would like to express their heartfelt appreciation for the generous support of Integral Information and Research Centre-7 (IIRC-7) at Integral University Lucknow (IU/R&D/2023-MCN0002255).

Funding

The authors affirm that no funds, grants, or financial support were received during the preparation of this review article.

Author information

Authors and Affiliations

Authors

Contributions

M.N. wrote the review article. J. K, S.K., and M.K.A.K. edited and corrected the manuscript, while S.A. and M.K.A.K. also proofread.

Corresponding author

Correspondence to Mohammad Kalim Ahmad Khan.

Ethics declarations

Ethics approval and consent to participate

Not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehal, M., Khatoon, J., Akhtar, S. et al. Exploring the potential of EphA2 receptor signaling pathway: a comprehensive review in cancer treatment. Mol Biol Rep 51, 337 (2024). https://doi.org/10.1007/s11033-024-09298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09298-8

Keywords

Navigation