Skip to main content
Log in

Co-treatment with bone marrow-derived mesenchymal stem cells and curcumin improved angiogenesis in myocardium in a rat model of MI

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI).

Methods and results

Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group.

Conclusion

Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Supplementary data and materials associated with this research, only will be available on request and reasonable purpose.

References

  1. Kumar M, Dhatwalia SK, Dhawan D (2016) Role of angiogenic factors of herbal origin in regulation of molecular pathways that control tumor angiogenesis. Tumour Biol 37(11):14341–14354. https://doi.org/10.1007/s13277-016-5330-5

    Article  CAS  PubMed  Google Scholar 

  2. Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Wang N (2019) VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol 234:17690–17703. https://doi.org/10.1002/jcp.28395

    Article  CAS  PubMed  Google Scholar 

  3. Choi WY, Poss KD (2012) Cardiac regeneration. Curr Top Dev Biol 100:319–344. https://doi.org/10.1016/B978-0-12-387786-4.00010-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun Q, Zhang Z, Sun Z (2014) The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis 1(1):113–119. https://doi.org/10.1016/j.gendis.2014.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Powers N, Huang GN (2022) Visualization of regenerating and repairing hearts. Clin Sci (Lond) 136(10):787–798. https://doi.org/10.1042/CS20211116

    Article  CAS  PubMed  Google Scholar 

  6. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pei J, Cai L, Wang F, Xu C, Pei S, Guo H et al (2022) LPA2 contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res 131(5):388–403. https://doi.org/10.1161/CIRCRESAHA

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Wang Q, Rao G, Qiu J, He R (2019) Curcumin improves perfusion recovery in experimental peripheral arterial disease by upregulating microRNA-93 expression. Exp Ther Med 17(1):798–802

    CAS  PubMed  Google Scholar 

  9. Rahnavard M, Hassanpour M, Ahmadi M, Heidarzadeh M, Amini H, Javanmard MZ et al (2019) Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J Cell Biochem. https://doi.org/10.1002/jcb.28480

    Article  PubMed  Google Scholar 

  10. Wyrobek AJ, Gordon LA, Burkhart JG, Francis MW, Kapp RW Jr, Letz G et al (1983) An evaluation of the mouse sperm morphology test and other sperm tests in nonhuman mammals: a report of the US environmental protection agency gene-tox program. Mutat Res 115(1):1–72. https://doi.org/10.1016/0165-1110(83)90014-3

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Wang QS, Le TY, Romanazzo S, Rashid FN, Ogawa M, Kilian KA et al (2021) Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy 23(12):1074–1084. https://doi.org/10.1016/j.jcyt.2021.07.016

    Article  CAS  Google Scholar 

  12. Li L, Chen X, Wang WE, Zeng C (2016) How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int 2016:9682757. https://doi.org/10.1155/2016/9682757

    Article  CAS  PubMed  Google Scholar 

  13. Xie N, Li Z, Adesanya TM, Guo W, Liu Y, Fu M et al (2016) Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J Cell Mol Med 20(1):29–37. https://doi.org/10.1111/jcmm.12489

    Article  PubMed  Google Scholar 

  14. Chehelcheraghi F, Chien S, Bayat M (2019) Mesenchymal stem cells improve survival in ischemic diabetic random skin flap via increased angiogenesis and VEGF expression. J Cell Biochem 120(10):17491–17499. https://doi.org/10.1002/jcb.29013

    Article  CAS  PubMed  Google Scholar 

  15. Mykhaylichenko VY, Kubyshkin A, Samarin S, Fomochkina I, Anisimova L (2016) Experimental induction of reparative morphogenesis and adaptive reserves in the ischemic myocardium using multipotent mesenchymal bone marrow-derived stem cells. Pathophysiology 23(2):95–104. https://doi.org/10.1016/j.pathophys

    Article  CAS  PubMed  Google Scholar 

  16. Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A (2022) Combining stem cells in myocardial infarction: the road to superior repair? Med Res Rev 42(1):343–373. https://doi.org/10.1002/med.21839

    Article  PubMed  Google Scholar 

  17. Hua P, Wang YY, Liu LB, Liu JL, Liu JY, Yang YQ et al (2014) In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction. Mol Med Rep 11(1):113–120. https://doi.org/10.3892/mmr.2014.2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tork OM, Khaleel EF, Abdelmaqsoud OM (2015) Altered cell to cell communication, autophagy and mitochondrial dysfunction in a model of hepatocellular carcinoma: potential protective effects of curcumin and stem cell therapy. Asian Pac J Cancer Prev 16(18):8271–8279. https://doi.org/10.7314/apjcp.2015.16.18.8271

    Article  PubMed  Google Scholar 

  19. Ormond DR, Shannon C, Oppenheim J, Zeman R, Das K, Murali R et al (2014) Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS One pretreatment 9(2):e88916. https://doi.org/10.1371/journal.pone.0088916

    Article  CAS  ADS  Google Scholar 

  20. Kumar M, Kasala ER, Bodduluru LN, Dahiya V, Lahkar M (2016) Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm Res 65(8):613–622. https://doi.org/10.1007/s00011-016-0944-z

    Article  CAS  PubMed  Google Scholar 

  21. Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC, Waksman R et al (2017) Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res 120(10):1598–1613

    Article  CAS  PubMed  Google Scholar 

  22. Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A et al (2015) Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. Daru 23:1–7

    Article  CAS  Google Scholar 

  23. Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC (2021) Angiogenesis after acute myocardial infarction. Cardiovasc Res 117(5):1257–1273. https://doi.org/10.1093/cvr/cvaa287

    Article  CAS  PubMed  Google Scholar 

  24. Xie Z, Gao M, Batra S, Koyama T (1997) The capillarity of left ventricular tissue of rats subjected to coronary artery occlusion. Cardiovasc Res 33(3):671–676. https://doi.org/10.1016/s0008-6363(96)00250-7

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Porcel M, Cai W, Gheysens O, Willmann JK, Chen K, Wang H et al (2008) Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 49(4):667–673. https://doi.org/10.2967/jnumed.107.040576

    Article  PubMed  Google Scholar 

  26. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons MI (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270(52):H1803–H1811. https://doi.org/10.1152/ajpheart.1996.270.5.H1803

    Article  CAS  PubMed  Google Scholar 

  27. Soeki T, Tamura Y, Shinohara H, Tanaka H, Bando K, Fukuda N (2000) Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 93(3):168–174

    Article  CAS  PubMed  Google Scholar 

  28. Wu B, Zhang Z, Lui W, Chen X, Wang Y, Chamberlain AA et al (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151(5):1083–1096. https://doi.org/10.1016/j.cell.2012.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kobayashi K, Maeda K, Takefuji M, Kikuchi R, Morishita Y, Hirashima M et al (2017) Dynamics of angiogenesis in ischemic areas of the infarcted heart. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-07524-x

    Article  CAS  Google Scholar 

  30. White SJ, Chong JJ (2020) Mesenchymal stem cells in cardiac repair: effects on myocytes, vasculature, and fibroblasts. Clin Ther 42(10):1880–1891

    Article  CAS  PubMed  Google Scholar 

  31. Bahrami N, Ale-Ebrahim M, Asadi Y, Barikrow N, Salimi A, Roholah F (2023) Combined application of human amniotic membrane mesenchymal stem cells and a modified PGS-co-PCL film in an experimental model of myocardial ischemia-reperfusion injury. Appl Biochem Biotechnol 3:1–8

    Google Scholar 

  32. Yang G, Zhu J, Zhan G, Fan G, Deng L, Tang H et al (2022) Mesenchymal stem cell-derived neuron-like cell transplantation combined with electroacupuncture improves synaptic plasticity in rats with intracerebral hemorrhage via mTOR/p70S6K signaling. Stem Cells Int. 2022:6450527. https://doi.org/10.1155/2022/6450527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaur G, Hussain MS, Kataria T, Deb A, Mohapatra C (2021) Health benefits of curcumin in the prevention and treatment of diseases. Int J Pharma Bio Sci 1(7):112–118

    Google Scholar 

  34. Tang J, Xie Q, Pan G, Wang J, Wang M (2006) Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 30(2):353–361. https://doi.org/10.1016/j.ejcts.2006.02.070

    Article  PubMed  Google Scholar 

  35. Meissner M, Doll M, Hrgovic I, Reichenbach G, König V, Hailemariam-Jahn T et al (2011) Suppression of VEGFR2 expression in human endothelial cells by dimethylfumarate treatment: evidence for anti-angiogenic action. J Invest Dermatol 131(6):1356–1364. https://doi.org/10.1038/jid.2011.46

    Article  CAS  PubMed  Google Scholar 

  36. Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A et al (2015) Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. Daru 23(1):33. https://doi.org/10.1186/s40199-015-0115-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Basak S, Srinivas V, Mallepogu A, Duttaroy AK (2020) Curcumin stimulates angiogenesis through VEGF and expression of HLA-G in first-trimester human placental trophoblasts. Cell Biol Int 44(5):1237–1251. https://doi.org/10.1002/cbin.11324

    Article  CAS  PubMed  Google Scholar 

  38. Lobo Filho HG, Ferreira NL, Sousa RBD, Carvalho ERD, Lobo PLD, Lobo Filho JG (2011) Experimental model of myocardial infarction induced by isoproterenol in rats. Rev Bras Cir Cardiovasc 26:469–476. https://doi.org/10.5935/1678-9741.20110024

    Article  PubMed  Google Scholar 

  39. Liu J, Zhu P, Song P, Xiong W, Chen H, Peng W et al (2015) Pretreatment of adipose derived stem cells with curcumin facilitates myocardial recovery via antiapoptosis and angiogenesis. Stem Cells Int. https://doi.org/10.1155/2015/638153

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu C, Liu W, Long L, Wang Z, Zhang W, He S et al (2022) Regeneration of infarcted hearts by myocardial infarction-responsive injectable hydrogels with combined anti-apoptosis, anti-inflammatory and pro-angiogenesis properties. Biomater 290:121849

    Article  CAS  Google Scholar 

  41. Chen K, Bai L, Lu J, Chen W, Liu C, Guo E et al (2022) Human decidual mesenchymal stem cells obtained from early pregnancy improve cardiac revascularization postinfarction by activating ornithine metabolism. Front Cardiovasc Med. 9:837780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang SX, Phillips WD (2013) Migration of resident cardiac stem cells in myocardial infarction. Anat Rec 296(2):184–191. https://doi.org/10.1002/ar.22633

    Article  Google Scholar 

  43. Casey TM, Arthur PG (2000) Hibernation in noncontracting mammalian cardiomyocytes. Circulation 102(25):3124–3129. https://doi.org/10.1161/01.cir.102.25.3124

    Article  CAS  PubMed  Google Scholar 

  44. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood J Am Soc Hematol 111(3):1327–1333. https://doi.org/10.1182/blood-2007-02-074997

    Article  CAS  Google Scholar 

  45. Yan S, Zhou M, Zheng X, Xing Y, Dong J, Yan M et al (2021) Anti-inflammatory effect of curcumin on the mouse model of myocardial infarction through regulating macrophage polarization. Mediators Inflamm 2021:9976912. https://doi.org/10.1155/2021/9976912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peluzzo AM, Autieri MV (2022) Challenging the paradigm: anti-inflammatory interleukins and angiogenesis. Cells 11(3):587. https://doi.org/10.3390/cells11030587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran, for supporting this project.

Funding

The current research was funded by Urmia University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MZJ HS. Performed the experiments: NM MZJ NA. Analyzed the data: MZJ NA. Wrote the manuscript: NM HS MZJ.

Corresponding author

Correspondence to Masoumeh Zirak Javanmard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical approval

This study was ethically approved by the Animal Care and Use Committee at Urmia University of Medical Sciences (IR.UMSU.REC.1396.384).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirfakhraie, N., Shoorei, H., Abedpour, N. et al. Co-treatment with bone marrow-derived mesenchymal stem cells and curcumin improved angiogenesis in myocardium in a rat model of MI. Mol Biol Rep 51, 261 (2024). https://doi.org/10.1007/s11033-023-09180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09180-z

Keywords

Navigation