Skip to main content

Advertisement

Log in

Advances in polysaccharides of natural source of anti-diabetes effect and mechanism

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose

Diabetes is a chronic disease in metabolic disorder, and the pathology is characterized by insulin resistance and insulin secretion disorder in blood. In current, many studies have revealed that polysaccharides extracted from natural sources with significant anti-diabetic effects. Natural polysaccharides can ameliorate diabetes through different action mechanisms. All these polysaccharides are expected to have an important role in the clinic.

Methods

Existing polysaccharides for the treatment of diabetes are reviewed, and the mechanism of polysaccharides in the treatment of diabetes and its structural characteristics are described in detail.

Results

This article introduced the natural polysaccharide through different mechanisms of action in the treatment of diabetes, including oxidative stress, apoptosis, inflammatory response and regulation of intestinal bacteria. Natural polysaccharides can treat of diabetes by regulating signaling pathways is also a research hotspot. In addition, the structural characteristics of polysaccharides were explored. There are some structure–activity relationships between natural polysaccharides and the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kerner W, Brückel JJE (2014) Definition, classification and diagnosis of diabetes mellitus. Clin Endocrinol Diabetes 122:384–386

    Article  CAS  Google Scholar 

  2. Melmer A, Laimer MJN (2016) Treatment goals in diabetes. Nov  Diabetes 31:1–27

    CAS  Google Scholar 

  3. Chen Q, Zhu L, Tang Y, Zhao Z, Yi T, Chen HJA (2017) Preparation-related structural diversity and medical potential in the treatment of diabetes mellitus with ginseng pectins. Ann N Y Acad Sci 1401:75–89

    Article  CAS  PubMed  Google Scholar 

  4. Mootoosamy A, Mahomoodally MFJJ (2014) Ethnomedicinal application of native remedies used against diabetes and related complications in mauritius. J Ethnopharmacol 151:413–444

    Article  PubMed  Google Scholar 

  5. Zheng Y, Bai L, Zhou Y, Tong R, Zeng M, Li X, Shi JJI (2019) Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int J Biol Macromol 121:1240–1253

    Article  CAS  PubMed  Google Scholar 

  6. Harikrishnan R, Devi G, Van Doan H, Balasundaram C, Thamizharasan S, Hoseinifar SH, Abdel-Tawwab MJF, Immunology S (2021) Effect of diet enriched with Agaricus bisporus polysaccharides (ABPs) on antioxidant property, innate-adaptive immune response and pro-anti inflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila. Fish Shellfish Immunol 114:238–252

    Article  CAS  PubMed  Google Scholar 

  7. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska JJI (2019) Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224:242–253

    Article  CAS  PubMed  Google Scholar 

  8. Inalegwu AE, Aimola IA, Mohammed AJPP (2021) Physcion ameliorates pancreatic β-cell dysfunction and diabetes-related oxidative stress markers in type 2 diabetes rat model. Phytomed Plus 1:100114

    Article  Google Scholar 

  9. Lopes-Virella MF, Hunt KJ, Baker NL, Virella G, Diabetes V, Complications I (2016) High levels of AGE-LDL, and of IgG antibodies reacting with MDA-lysine epitopes expressed by oxLDL and MDA-LDL in circulating immune complexes predict macroalbuminuria in patients with type 2 diabetes. J Diabetes Complicat 30:693–699

    Article  Google Scholar 

  10. Niu J, Xu G, Jiang S, Li H, Yuan G (2017) In Vitro Antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes. Int J Biol Macromol 94:154–160

    Article  CAS  PubMed  Google Scholar 

  11. Pan Y, Wang C, Chen Z, Li W, Yuan G, Chen HJCP (2017) Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohyd Polym 164:370–378

    Article  CAS  Google Scholar 

  12. Lu A, Yu M, Fang Z, Xiao B, Guo L, Wang W, Li J, Wang S, Zhang Y (2019) Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. Int J Biol Macromol 121:261–269

    Article  CAS  PubMed  Google Scholar 

  13. Zhao R, Jin R, Chen Y, Han F-MJC (2015) Hypoglycemic and hypolipidemic effects of Lycium barbarum polysaccharide in diabetic rats. Chin Herb Med 7:310–315

    Google Scholar 

  14. Zheng X, Zhao W, OU Q, Tang S, Chen G, Feng L, Zhang H (2014) Association of non-HDL-cholesterol and non-HDL-cholesterol-to-HDL-cholesterol ratio with early diabetic nephropathy in patients with type 2 diabetes mellitus. Chin J Endocrinol Metabol 12:216–217

    Google Scholar 

  15. Zhang M, Zhou J, Liu Y, Sun X, Luo X, Han C, Zhang L, Wang B, Ren Y, Zhao YJDr, practice C (2018) Risk of type 2 diabetes mellitus associated with plasma lipid levels: The rural Chinese cohort study. Diabetes Res Clin Pract 135:150–157

    Article  CAS  PubMed  Google Scholar 

  16. Hong T, Zhao J, Dong M, Meng Y, Mu J, Yang Z (2012) Composition and bioactivity of polysaccharides from Inula britannica flower. Int J Biol Macromol 51:550–554

    Article  CAS  PubMed  Google Scholar 

  17. Meng J, Bai Z, Huang W, Liu Y, Wang P, Nie S, Huang XJBC, Fibre D (2020) Polysaccharide from white kidney bean can improve hyperglycemia and hyperlipidemia in diabetic rats. Bioact Carbohydr Dietary Fibre 24:100222

    Article  CAS  Google Scholar 

  18. Xie C, Gao W, Li X, Luo S, Chye FYJFB (2022) Study on the hypolipidemic properties of garlic polysaccharide in vitro and in normal mice as well as its dyslipidemia amelioration in type2 diabetes mice. Food Biosci 47:101683

    Article  CAS  Google Scholar 

  19. Elleri D, Allen J, Nodale M, Wilinska M, Acerini C, Dunger D, Hovorka RJDM (2010) Suspended insulin infusion during overnight closed-loop glucose control in children and adolescents with Type 1 diabetes. Diabet Med 27:480–484

    Article  CAS  PubMed  Google Scholar 

  20. Nagino K, Yokozawa J, Sasaki Y, Matsuda A, Takeda H, Kawata SJB, Communications BR (2012) Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation. Biochem Biophys Res Commun 425:266–272

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Khosrow-Khavar F, Speck M, Kieffer T, Woo M, Marzban LJCJOD (2008) Suppression of caspase-3 activation protects primary islet β-cells from the cytotoxic effects of human islet amyloid polypeptide. Can J Diabetes 32:302

    Article  Google Scholar 

  22. Rückert F, Samm N, Lehner A-K, Saeger H-D, Grützmann R, Pilarsky CJBC (2010) Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis. BMC Cancer 10:1–7

    Article  Google Scholar 

  23. Zhang Y, Ren C, Lu G, Cui W, Mu Z, Gao H, Wang YJRT (2014) Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharmacol 70:687–695

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, He Z, Liu X, Chen Z, Sun J, Wu Z, Yang X, Chen X, Tang Z, Wang KJJOFF (2019) Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: pancreatic β-cell apoptosis inhibition. J Funct Foods 54:361–370

    Article  CAS  Google Scholar 

  25. Zhu K, Nie S, Li C, Lin S, Xing M, Li W, Gong D, Xie M (2013) A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia. Int J Biol Macromol 57:142–150

    Article  CAS  PubMed  Google Scholar 

  26. Burini RC, Anderson E, Durstine JL, Carson JAJSM, Science H (2020) Inflammation, physical activity, and chronic disease: an evolutionary perspective. Sports Med Health Sci 2:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang Q, Shu F, Gong J, Ding P, Cheng R, Li J, Tong R, Ding L, Sun H, Huang W (2020) Sweroside ameliorates NAFLD in high-fat diet induced obese mice through the regulation of lipid metabolism and inflammatory response. J Ethnopharmacol 255:112556

    Article  CAS  PubMed  Google Scholar 

  28. Amirshahrokhi K, Zohouri AJC (2021) Carvedilol prevents pancreatic β-cell damage and the development of type 1 diabetes in mice by the inhibition of proinflammatory cytokines, NF-κB, COX-2, iNOS and oxidative stress. Cytokine 138:155394

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Tang Q, Zhang J, Fang M, Li Y, Sciences P (2014) Effect of SB203580 on pathologic change of pancreatic tissue and expression of TNF-α and IL-1β in rats with severe acute pancreatitis. Eur Rev Med Pharmacol Sci 18:338–343

    PubMed  Google Scholar 

  30. Zang G, Sandberg M, Carlsson P-O, Welsh N, Jansson L, Barbu A (2015) Activated pancreatic stellate cells can impair pancreatic islet function in mice. Upsala J Med Sci 120:169–180

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu W, Niu T, Xu B, Navarro G, Schipma MJ, Mauvais-Jarvis FJJOD, Complications I (2017) Androgen receptor-deficient islet β-cells exhibit alteration in genetic markers of insulin secretion and inflammation. A transcriptome analysis in the male mouse. J Diabetes Complicat 31:787–795

    Article  Google Scholar 

  32. Zhou J, Xu G, Yan J, Li K, Bai Z, Cheng W, Huang KJJOE (2015) Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J Ethnopharmacol 164:229–238

    Article  CAS  PubMed  Google Scholar 

  33. Xiang H, Sun-Waterhouse D, Cui CJFS, Wellness H (2021) Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κB signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice. Food Sci Human Wellness 10:87–93

    Article  CAS  Google Scholar 

  34. Wang Z, Wang Z, Huang W, Suo J, Chen X, Ding K, Sun Q, Zhang H (2020) Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. Int J Biol Macromol 145:484–491

    Article  CAS  PubMed  Google Scholar 

  35. Guo C, Li R, Zheng N, Xu L, Liang T, He QJII (2013) Anti-diabetic effect of ramulus mori polysaccharides, isolated from Morus alba L., on STZ-diabetic mice through blocking inflammatory response and attenuating oxidative stress. Int Immunopharmacol 16:93–99

    Article  CAS  PubMed  Google Scholar 

  36. Sebastián Domingo JJ, Sánchez Sánchez CJREED (2018) From the intestinal flora to the microbiome. Rev Esp Enferm Dig 101:51–56

    Google Scholar 

  37. Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Zhao BJB (2019) Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother 117:109138

    Article  CAS  PubMed  Google Scholar 

  38. Batterham RL, Cummings DE (2016) Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 39:893–901

    Article  PubMed  Google Scholar 

  39. Hu S, Xu H, Chen R, Wang J, Li Z, Xu J (2014) Activation of PKB and ERK, but not PI3K, is involved in fucosylated chondroitin sulphate from Acaudina molpadioides induced glucose uptake. J Funct Foods 10:385–396

    Article  CAS  Google Scholar 

  40. Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M (2016) The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 15:1–8

    Article  Google Scholar 

  41. Guo W-L, Deng J-C, Pan Y-Y, Xu J-X, Hong J-L, Shi F-F, Liu G-L, Qian M, Bai W-D, Zhang W (2020) Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. Int J Biol Macromol 153:1231–1240

    Article  CAS  PubMed  Google Scholar 

  42. Lu H, Liu P, Zhang X, Bao T, Wang T, Guo L, Li Y, Dong X, Li X, Dong Y (2021) Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial γδ T cells in rats. J Funct Foods 79:104407

    Article  CAS  Google Scholar 

  43. Yuan Y, Zhou J, Zheng Y, Xu Z, Li Y, Zhou S, Zhang CJB (2020) Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed Pharmacother 127:110182

    Article  CAS  PubMed  Google Scholar 

  44. Yamashita H, Fujisawa K, Ito E, Idei S, Kawaguchi N, Kimoto M, Hiemori M, Tsuji HJB, biotechnology, and biochemistry. (2007) Improvement of obesity and glucose tolerance by acetate in type 2 diabetic otsuka long-Evans tokushima fatty (OLETF) rats. Biosci Biotechnol Biochem 71:1236–1243

    Article  CAS  PubMed  Google Scholar 

  45. Cummings JH, Pomare E, Branch W, Naylor C, MacFarlane GJG (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fang JY, Lin Y, Xie HL, Farag MA, Feng SM, Li JJ, Shao P (2022) Dendrobium officinale leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice. Food Chemistry-X 13:100207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Xiong T, Nie SP, Xie MY (2018) Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohyd Polym 201:624–633

    Article  CAS  Google Scholar 

  48. Wang HY, Guo LX, Hu WH, Peng ZT, Wang C, Chen ZC, Liu EYL, Dong TTX, Wang TJ, Tsim KWK (2019) Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. J Funct Foods 63:103593

    Article  CAS  Google Scholar 

  49. Wang KP, Wang HX, Liu YG, Shui WZ, Wang JF, Cao P, Wang HJ, You RX, Zhang Y (2018) Dendrobiurn officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. J Funct Foods 40:261–271

    Article  CAS  Google Scholar 

  50. Jia RB, Li ZR, Wu J, Ou ZR, Liao BW, Sun BG, Lin LZ, Zhao MM (2020) Mitigation mechanisms of Hizikia fusifarme polysaccharide consumption on type 2 diabetes in rats. Int J Biol Macromol 164:2659–2670

    Article  CAS  PubMed  Google Scholar 

  51. Guo QW, Chen ZQ, Santhanam RK, Xu LL, Gao XD, Ma QQ, Xue ZH, Chen HX (2019) Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle. Int J Biol Macromol 121:981–988

    Article  CAS  PubMed  Google Scholar 

  52. Liu G, Feng S, Yan J, Luan D, Sun P, Shao P (2022) Antidiabetic potential of polysaccharides from Brasenia schreberi regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. Curr Res Food Sci 5:1465–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xia T, Liu CS, Hu YN, Luo ZY, Chen FL, Yuan LX, Tan XM (2021) Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/ AKT signaling. Food Res Int 150:110717

    Article  CAS  PubMed  Google Scholar 

  54. He XT, Gao F, Hou JJ, Li TJ, Tan J, Wang CY, Liu XY, Wang MQ, Liu H, Chen YQ, Yu ZY, Yang M (2021) Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus. J Biol Chem. https://doi.org/10.1016/j.jbc.2021.101002

    Article  PubMed  PubMed Central  Google Scholar 

  55. He X, Gao F, Hou J, Li T, Tan J, Wang C, Liu X, Wang M, Liu H, Chen Y, Yu Z, Yang M (2021) Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus. J Biol Chem 297:101002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang B, Luo Y, Wei X, Kan J (2022) Polysaccharide from Hovenia dulcis (Guaizao) improves pancreatic injury and regulates liver glycometabolism to alleviate STZ-induced type 1 diabetes mellitus in rats. Int J Biol Macromol 214:655–663

    Article  CAS  PubMed  Google Scholar 

  57. Tang C, Sun J, Liu J, Jin C, Wu X, Zhang X, Chen H, Gou Y, Kan J, Qian C, Zhang N (2019) Immune-enhancing effects of polysaccharides from purple sweet potato. Int J Biol Macromol 123:923–930

    Article  CAS  PubMed  Google Scholar 

  58. Liu W, Li Z, Feng C, Hu S, Yang X, Xiao K, Nong Q, Xiao Q, Wu K, Li X-Q, Cao W (2022) The structures of two polysaccharides from Angelica sinensis and their effects on hepatic insulin resistance through blocking RAGE. Carbohyd Polym 280:119001

    Article  CAS  Google Scholar 

  59. Xu L, Yang F, Wang J, Huang H, Huang Y (2015) Anti-diabetic effect mediated by Ramulus mori polysaccharides. Carbohyd Polym 117:63–69

    Article  CAS  Google Scholar 

  60. Amiri B, Hosseini NS, Taktaz F, Amini K, Rahmani M, Amiri M, Sadrjavadi K, Jangholi A, Esmaeili S (2019) Inhibitory effects of selected antibiotics on the activities of α-amylase and α-glucosidase: In-vitro, in-vivo and theoretical studies. Eur J Pharm Sci 138:105040

    Article  CAS  PubMed  Google Scholar 

  61. Daoudi NE, Bouhrim M, Ouassou H, Legssyer A, Mekhfi H, Ziyyat A, Aziz M, Bnouham M (2020) Inhibitory effect of roasted/ unroasted Argania spinosa seeds oil on α- glucosidase, α-amylase and intestinal glucose absorption activities. S Afr J Bot 135:413–420

    Article  CAS  Google Scholar 

  62. Wang D, Li C, Fan W, Yi T, Wei A, Ma Y (2019) Hypoglycemic and hypolipidemic effects of a polysaccharide from fructus corni in streptozotocin-induced diabetic rats. Int J Biol Macromol 133:420–427

    Article  CAS  PubMed  Google Scholar 

  63. Thanh TTT, Quach TTM, Yuguchi Y, Nguyen NT, Van Ngo Q, Van Bui N, Kawashima S, Ho CD (2021) Molecular structure and anti-diabetic activity of a polysaccharide extracted from pumpkin Cucurbita pepo. J Mol Struct 1239:130507

    Article  CAS  Google Scholar 

  64. Zhu Z-Y, Luo Y, Dong G-L, Ren Y-Y, Chen L-J, Guo M-Z, Wang X-T, Yang X-Y, Zhang Y (2016) Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus. Int J Biol Macromol 87:570–576

    Article  CAS  PubMed  Google Scholar 

  65. Bhateja PK, Kajal A, Singh R (2020) Amelioration of diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using acacia tortilis polysaccharide in streptozotocin-nicotinamide induced diabetes in rats. J Ayurveda Integr Med 11:405–413

    Article  PubMed  PubMed Central  Google Scholar 

  66. Saxena AK, Pandey G, Gupta S, Singh AB, Srivastava AK (2009) Synthesis of protein tyrosine phosphatase 1B inhibitors: Model validation and docking studies. Bioorg Med Chem Lett 19:2320–2323

    Article  CAS  PubMed  Google Scholar 

  67. Sun R, Deng X, Zhang D, Xie F, Wang D, Wang J, Tavallaie MS, Jiang F, Fu L (2019) Anti-diabetic potential of Pueraria lobata root extract through promoting insulin signaling by PTP1B inhibition. Bioorg Chem 87:12–15

    Article  CAS  PubMed  Google Scholar 

  68. Wang N, Zhang D, Mao X, Zou F, Jin H, Ouyang J (2009) Astragalus polysaccharides decreased the expression of PTP1B through relieving ER stress induced activation of ATF6 in a rat model of type 2 diabetes. Mol Cell Endocrinol 307:89–98

    Article  CAS  PubMed  Google Scholar 

  69. Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, Huang L, Mu Z (2015) A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. Int J Biol Macromol 72:951–959

    Article  CAS  PubMed  Google Scholar 

  70. Straus DS, Glass CK (2007) Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol 28:551–558

    Article  CAS  PubMed  Google Scholar 

  71. Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251

    Article  CAS  PubMed  Google Scholar 

  72. Kota BP, Huang TH-W, Roufogalis BD (2005) An overview on biological mechanisms of PPARs. Pharmacol Res 51:85–94

    Article  CAS  PubMed  Google Scholar 

  73. Yu C-H, Dai X-Y, Chen Q, Zang J-N, Deng L-L, Liu Y-H, Ying H-Z (2013) Hypolipidemic and antioxidant activities of polysaccharides from Rosae Laevigatae fructus in rats. Carbohyd Polym 94:56–62

    Article  CAS  Google Scholar 

  74. Niu J, Pi Z, Yue H, Wang Y, Yu Q, Liu S (2012) Effect of ginseng polysaccharide on the urinary excretion of type 2 diabetic rats studied by liquid chromatography–mass spectrometry. J Chromatogr B 907:7–12

    Article  CAS  Google Scholar 

  75. Hasanpour M, Iranshahy M, Iranshahi M (2020) The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomed Pharmacother 128:110263

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Zhang J, Zhao B, Wu Y, Wang C, Wang Y (2010) Structural features and hypoglycaemic effects of Cynomorium songaricum polysaccharides on STZ-induced rats. Food Chem 120:443–451

    Article  CAS  Google Scholar 

  77. Shi Z-Q, Wang L-Y, Zheng J-Y, Xin G-Z, Chen L (2021) Lipidomics characterization of the mechanism of Cynomorium songaricum polysaccharide on treating type 2 diabetes. J Chromatogr B 1176:122337

    Article  Google Scholar 

  78. Shang X-L, Pan L-C, Tang Y, Luo Y, Zhu Z-Y, Sun H-Q, Meng M, Zhang Y-M (2018) 1H NMR-based metabonomics of the hypoglycemic effect of polysaccharides from Cordyceps militaris on streptozotocin-induced diabetes in mice. Nat Prod Res 34:1366–1372

    Article  PubMed  Google Scholar 

  79. Xia H, Tang H, Wang F, Yang X, Wang Z, Liu H, Pan D, Yang C, Wang S, Sun G (2019) An untargeted metabolomics approach reveals further insights of Lycium barbarum polysaccharides in high fat diet and streptozotocin-induced diabetic rats. Food Res Int 116:20–29

    Article  CAS  PubMed  Google Scholar 

  80. Li X-M (2007) Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol 40:461–465

    Article  CAS  PubMed  Google Scholar 

  81. Yang Y, Li J, Hong Q, Zhang X, Liu Z, Zhang T (2022) Polysaccharides from Hericium erinaceus fruiting bodies: structural characterization Immunomodulatory Activity and Mechanism. utrients 14:3721

    Article  CAS  Google Scholar 

  82. Wang K, Tang Z, Wang J, Cao P, Li Q, Shui W, Wang H, Zheng Z, Zhang Y (2017) RETRACTED: Polysaccharide from Angelica sinensis ameliorates high-fat diet and STZ-induced hepatic oxidative stress and inflammation in diabetic mice by activating the Sirt1–AMPK pathway. J Nutr Biochem 43:88–97

    Article  CAS  PubMed  Google Scholar 

  83. Kuo Y-T, Lin C-C, Kuo H-T, Hung J-H, Liu C-H, Jassey A, Yen M-H, Wu S-J, Lin L-T (2019) Identification of baicalin from Bofutsushosan and Daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways. J Food Drug Anal 27:240–248

    Article  CAS  PubMed  Google Scholar 

  84. Meng Y, Lyu F, Xu X, Zhang L (2020) Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromol 21:1653–1677

    Article  CAS  Google Scholar 

  85. Wen Y, Liu Y, Huang Q, Liu R, Liu J, Zhang F, Liu S, Jiang Y (2022) Moringa oleifera. Lam seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf/2HO-1 pathway. Phytomed Int J Phytother Phytopharmacol 95:153856

    CAS  Google Scholar 

  86. Fu C-Y, Ren L, Liu W-J, Sui Y, Nong Q-N, Xiao Q-H, Li X-Q, Cao W (2021) Structural characteristics of a hypoglycemic polysaccharide from Fructus Corni. Carbohyd Res 506:108358

    Article  CAS  Google Scholar 

  87. Hao Y, Sun H, Zhang X, Wu L, Zhu Z (2020) A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. Food Biosci 37:100735

    Article  CAS  Google Scholar 

  88. Li F, Wei Y, Liang L, Huang L, Yu G, Li Q (2021) A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohyd Polym 251:117090

    Article  CAS  Google Scholar 

  89. ShanChen KBM, Cheong KL, Liu Y (2019) Pumpkin polysaccharides: purification, characterization and hypoglycemic potential. Int J Biol Macromol 139:842–849

    Article  CAS  PubMed  Google Scholar 

  90. Li R, Tao A, Yang R, Fan M, Zhang X, Du Z, Shang F, Xia C, Duan B (2020) Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum coll et hemsl. Biomed Pharmacother 131:110687

    Article  CAS  PubMed  Google Scholar 

  91. Kuang M-T, Li J-Y, Yang X-B, Yang L, Xu J-Y, Yan S, Lv Y-F, Ren F-C, Hu J-M, Zhou J (2020) Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. Carbohyd Polym 241:116326

    Article  CAS  Google Scholar 

  92. Ru Y, Chen X, Wang J, Guo L, Lin Z, Peng X, Qiu B, Wong W-L (2019) Structural characterization, hypoglycemic effects and mechanism of a novel polysaccharide from Tetrastigma hemsleyanum Diels et Gilg. Int J Biol Macromol 123:775–783

    Article  CAS  PubMed  Google Scholar 

  93. Chen Y, Liu D, Wang D, Lai S, Zhong R, Liu Y, Yang C, Liu B, Sarker MR, Zhao C (2019) Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food Chem Toxicol 126:295–302

    Article  CAS  PubMed  Google Scholar 

  94. Liu W, Lv X, Huang W, Yao W, Gao X (2018) Characterization and hypoglycemic effect of a neutral polysaccharide extracted from the residue of Codonopsis Pilosula. Carbohyd Polym 197:215–226

    Article  CAS  Google Scholar 

  95. Chen T, Zhang M, Li J, Surhio MM, Li B, Ye M (2016) Structural characterization and hypoglycemic activity of Trichosanthes peel polysaccharide. LWT 70:55–62

    Article  CAS  Google Scholar 

  96. Liu W, Lu W, Chai Y, Liu Y, Yao W, Gao X (2017) Preliminary structural characterization and hypoglycemic effects of an acidic polysaccharide SERP1 from the residue of Sarcandra glabra. Carbohyd Polym 176:140–151

    Article  CAS  Google Scholar 

  97. Tong H, Liang Z, Wang G (2008) Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohyd Polym 71:316–323

    Article  CAS  Google Scholar 

  98. Yang B, Luo Y, Sang Y, Kan J (2022) Isolation, purification, structural characterization, and hypoglycemic activity assessment of polysaccharides from Hovenia dulcis (Guai Zao). Int J Biol Macromol 208:1106–1115

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by grants from the National Science Foundation of China (Grant No. 82160786).

Author information

Authors and Affiliations

Authors

Contributions

M-HY: devised, structured, and wrote the manuscript. All the authors reviewed and corrected the manuscript.

Corresponding author

Correspondence to Hua-Guo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, MH., Yang, Y., Zhou, X. et al. Advances in polysaccharides of natural source of anti-diabetes effect and mechanism. Mol Biol Rep 51, 101 (2024). https://doi.org/10.1007/s11033-023-09081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09081-1

Keywords

Navigation