Skip to main content
Log in

The protective effect of N-acetylcysteine against MK-801-induced neurodegeneration in mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Neurological disorders result in not only a decline in the quality of life of patients but also a global economic burden. Therefore, protective medicine becomes more important for society. MK-801 is a chemical agent used to understand the etiology of behavioral disorders and brain degeneration in animal models. This study aims to determine whether N-acetylcysteine (NAC) is useful to treat brain degeneration caused by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist.

Methods and results

Four groups were formed by dividing 24 male BALB/c mice into groups of six. The control group was given a saline solution (10 ml/kg-i.p.). MK-801 (1 mg/kg-i.p.) was given alone to one group, and it was given with NAC (100 mg/kg-i.p.) to another group, while the last group was given only NAC (100 mg/kg-i.p.). The administration of drugs lasted for fourteen days. After the behavioral tests (open field and elevated plus-maze), all animals were euthanised, and brain tissues were collected for real-time PCR, TAS-TOS analysis, hematoxylin-eosin, Kluver-Barrera, and TUNEL staining. In the MK-801 group, besides nuclear shrinkage in neurons, glial cell infiltration, vacuolization in cortical neurons, white matter damage, and apoptosis were observed.

Conclusion

In the mice given NAC as a protective agent, it was observed that behavioral problems improved, antioxidant levels increased, and nuclear shrinkage, glial cell infiltration, vacuolization in neurons, and white matter degeneration were prevented. Moreover, MBP expression increased, and the number of TUNEL-positive cells significantly decreased. As a result, it was observed that NAC may have a protective effect against brain degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used/analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Sharma VK, Thakur G, Singh N, Garg S, Dhiman S, Gupta MH, Rahman A, Najda M, Walasek-Janusz M, Kamel GM, Albadrani, Muhammad F, Akhtar A, Saleem AE, Altyar (2021) Dysbiosis and Alzheimer’s Disease: a role for chronic stress? Biomolecules 11. 5:678Abdel-Daim

  2. Knapp M, Wong G (2020) Economics and mental health: the current scenario. World Psychiatry 19(1):3–14. https://doi.org/10.1002/wps.20692

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arya A, Chahal R, Rao R, Rahman MH, Kaushik D, Akhtar MF, Saleem A, Khalifa SMA, El-Seedi HR, Kamel M, Albadrani GM, Abdel-Daim MM, Mittal V (2021) Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules. Feb 25;11(3):350

  4. Yu J, Qi D, Xing M, Li R, Jiang K, Peng Y, Cui D (2011) MK-801 induces schizophrenic behaviors through downregulating wnt signaling pathways in male mice. Brain Res 18:1385:281–292

    Article  Google Scholar 

  5. Xiu Y, Kong XR, Zhang L, Qiu X, Chao FL, Peng C, Gao Y, Huang CX, Wang SR, Tang Y (2014) White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism. Anat Rec (Hoboken) 297(8):1498–1507

    Article  CAS  PubMed  Google Scholar 

  6. Xiu Y, Kong XR, Zhang L, Qiu X, Gao Y, Huang CX, Chao FL, Wang SR, Tang Y (2015) The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801. J Psychiatr Res 63:132–140

    Article  PubMed  Google Scholar 

  7. Bin-Jumah MN, Al-Huqail AA, Abdelnaeim N, Kamel M, Fouda MMA, Abulmeaty MMA, Saadeldin IM, Abdel-Daim MM (2021) Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environ Sci Pollut Res Int Jun 28(21):26653–26663

    Article  CAS  Google Scholar 

  8. Kruk-Slomka M, Budzynska B, Slomka T, Banaszkiewicz I, Biala G (2016) The influence of the cb1 receptor ligands on the schizophrenia-like effects in mice induced by MK-801. Neurotox Res 30(4):658–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akosman SM, Turkmen R, Demirel HH (2021) Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. Environ Sci Pollut Res 28:65872–65884

    Article  CAS  Google Scholar 

  10. Rosenbrock H, Dorner-Ciossek C, Giovannini R, Schmid B, Schuelert N (2022) Effects of the Glycine Transporter-1 inhibitor iclepertin (BI 425809) on sensory Processing, neural network function, and Cognition in Animal Models related to Schizophrenia. J Pharmacol Exp Ther 382(2):223–232. https://doi.org/10.1124/jpet.121.001071

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Boulton AA, Zuo DM, Yu PH (1996) MK-801 induces apoptotic neuronal death in the rat retrosplenial cortex: prevention by cycloheximide and R(-)-2-Hexyl-N-methylpropargylamine. J Neurosci Res 46:8289

    Article  Google Scholar 

  12. Horvàth ZC, Czopf J, Buzsàki G (1997) MK-801-induced neuronal damage in rats. Brain Res 753:181–195

    Article  PubMed  Google Scholar 

  13. Kovacic P, Somanathan R (2010) Clinical physiology and mechanism of dizocilpine (MK-801) oxidative Medicine and Cellular Longevity. 3:113–122

  14. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63:1945–1961

    Article  CAS  PubMed  Google Scholar 

  15. Matute C, Ransom BR (2012) Roles of white matter in central nervous system pathophysiologies. ASN Neuro 4(2):e00079. https://doi.org/10.1042/AN20110060

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xiang Z, Nesterov EE, Skoch J, Lin T, Hyman BT, Swager TM, Bacskai BJ, Reeves SA (2005) Detection of myelination using a novel histological probe. J Histochem Cytochem Dec; 53(12):1511–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kipp M, Norkus A, Krauspe B, Clarner T, Berger K, van der Valk P, Amor S, Beyer C (2011) The hippocampal fimbria of cuprizone-treated animals as a structure for studying neuroprotection in multiple sclerosis. Inflamm Res Aug 60(8):723–726

    Article  CAS  Google Scholar 

  18. Aziz AE, Sayed AE, Sallam RH, El Sayed NA NS (2021) Neuroprotective Effects of Telmisartan and Nifedipine Against Cuprizone-Induced demyelination and behavioral dysfunction in mice: roles of NF-κB and Nrf2. Inflamm Aug 44(4):1629–1642

    Article  Google Scholar 

  19. Ye JN, Chen XS, Su L, Liu YL, Cai QY, Zhan XL, Xu Y, Zhao SF, Yao ZX (2013) Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. PLoS ONE 8(1):e54590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee HJ, Kang JS, Kim YI (2009) Citicoline protects against cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Clin Neurol. Mar;5(1):33 – 8. https://doi.org/10.3988/jcn.2009.5.1.33. Epub 2008 Mar 31. Erratum in: J Clin Neurol. 2009;5(2):104

  21. Hesse A, Wagner M, Held J, Brück W, Salinas-Riester G, Hao Z, Waisman A, Kuhlmann T (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis Feb 37(2):362–369

    Article  CAS  Google Scholar 

  22. Sharp FR, Jasper P, Hall J, Noble L, Sagar SM (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann Neurol 30(6):801–809

    Article  CAS  PubMed  Google Scholar 

  23. Ozyurt B, Ozyurt H, Akpolat N, Erdogan H, Sarsilmaz M (2007a) Oxidative stress in prefrontal cortex of rat exposed to MK-801 and protective effects of CAPE. Prog Neuropsychopharmacol Biol Psychiatry 31(4):832–838

    Article  CAS  PubMed  Google Scholar 

  24. Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I (2007b) The protective effects of omega – 3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50(1):196–202

    Article  CAS  PubMed  Google Scholar 

  25. Ozyurt H, Ozyurt B, Sarsilmaz M, Kus I, Songur A, Akyol O (2014) Potential role of some oxidant/antioxidant status parameters in prefrontal cortex of rat brain in an experimental psychosis model and the protective effects of melatonin. Eur Rev Med Pharmacol Sci 18(15):2137–2144

    CAS  PubMed  Google Scholar 

  26. Genius J, Geiger J, Dölzer AL, Benninghoff J, Giegling I, Hartmann AM, Möller HJ, Rujescu D (2013) Glutamatergic dysbalance and oxidative stress in in vivo and in vitro models of psychosis based on chronic NMDA receptor antagonism. PLoS One Jul 15(7):e59395. https://doi.org/10.1371/journal.pone.0059395PMID: 23869202; PMCID: PMC3711936

    Article  CAS  Google Scholar 

  27. Scalley RD, Conner CS (1978) Acetaminophen poisoning: a case report of the use of acetylcysteine. Am J Hosp Pharm Aug 35(8):964–967

    CAS  Google Scholar 

  28. Dean O, Giorlando F, Berk M (2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36(2):78–86

    Article  PubMed  PubMed Central  Google Scholar 

  29. Adair JC, Knoefel JE, Morgan N (2001) Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology. Oct 23;57(8):1515–1517

  30. Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, Butterfield DA, Morley JE (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem Mar 84(5):1173–1183

    Article  CAS  Google Scholar 

  31. Dean O, van den Buuse M, Copolov D, Berk D, Bush A (2004) N-acetyl-cysteine treatment inhibits depletion of brain glutathione levels in rats: implications for schizophrenia. Int J Neuropsychopharmacol 7(Supplement 2):S262–S262

    Google Scholar 

  32. Tardiolo G, Bramanti P, Mazzon E (2018) Overview on the effects of N-acetylcysteine in neurodegenerative diseases. MDPI Molecules. 23;3305.

  33. Turkmen R, Birdane YO, Demirel HH, Yavuz H, Kabu M, Ince S (2019) Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ Sci Pollut Res 26:11427–11437

    Article  CAS  Google Scholar 

  34. Himi T, Ikeda M, Yasuhara T, Murota SI (2003) Oxidative neuronal death caused by glutamate uptake inhibition in cultured hippocampal neurons. J. Neurosci. Res. Mar 1;71(5):679 – 88

  35. Janáky R, Dohovics R, Saransaari P, Oja SS (2007) Modulation of [3H] dopamine release by glutathione in mouse striatal slices. Neurochem Res 32(8):1357–1364

    Article  PubMed  Google Scholar 

  36. Carlsson A (2006) The neurochemical circuitry of schizophrenia. Pharmacopsychiatry 39(Suppl 1):S10–S14

    Article  CAS  PubMed  Google Scholar 

  37. Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Bush AI (2008) N-acetyl cysteine as a glutathione precursor for schizophrenia–a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. Sep 1;64(5):361-8

  38. Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, Bovet P, Bush AI, Conus P, Copolov D, Fornari E, Meuli R, Solida A, Vianin P, Cuénod M, Buclin T, Do KQ (2008) Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacol Aug 33(9):2187–2199 Epub 2007 Nov 14

    Article  CAS  Google Scholar 

  39. Bulut M, Savas HA, Altindag A, Virit O, Dalkilic A (2009) Beneficial effects of N-acetylcysteine in treatment resistant schizophrenia. World J Biol Psychiatry 10(4 Pt 2):626–628

    Article  PubMed  Google Scholar 

  40. Mirzakhani N, Farshid AA, Tamaddonfard E, Imani M (2016) Study of the effects of n-acetylcysteine on functional, biochemical and ultrastructural evaluations of crushed sciatic nerve in the rat. J Urmia Univ Med Sci 27(4):266–276

    Google Scholar 

  41. Hichor M, Sundaram VK, Eid SA, Abdel-Rassoul R, Petit PX, Borderie D, Bastin J, Eid AA, Manuel M, Grenier J, Massaad C (2018) Liver X receptor exerts a protective effect against the oxidative stress in the peripheral nerve. Sci Rep Feb 6(1):2524. https://doi.org/10.1038/s41598-018-20980-3

    Article  CAS  Google Scholar 

  42. Zaki SM, Mohamed EA, Motawie AG, Abdel Fattah S (2018) N-acetylcysteine versus progesterone on the cisplatin-induced peripheral neurotoxicity. Folia Morphol (Warsz) 77(2):234–245

    Article  CAS  PubMed  Google Scholar 

  43. Fukami G, Hashimoto K, Koike K, Okamura N, Shimizu E, Iyo M (2004) Effect of antioxidant N-acetyl-L-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res 1016(1):90–95

    Article  CAS  PubMed  Google Scholar 

  44. Taksande BG, Kotagale NR, Tripathi SJ, Ugale RR, Chopde CT (2009) Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology 57(4):415–424

    Article  CAS  PubMed  Google Scholar 

  45. Akillioglu K, Babar Melik E, Kocahan S (2012) The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice. Pharmacol Biochem Behav 102:407–414

    Article  CAS  PubMed  Google Scholar 

  46. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS: acta pathologica, microbiologica. et Immunol Scand 96(10):857–881. https://doi.org/10.1111/j.1699-0463.1988.tb00954.x

    Article  CAS  Google Scholar 

  47. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  48. Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37:112–119

    Article  CAS  PubMed  Google Scholar 

  49. Walther S, Strik W (2012) Motor symptoms and schizophrenia. Neuropsychobiology 66:77–92

    Article  PubMed  Google Scholar 

  50. Karussis D (2014) The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun Feb-Mar; 48–49:134 – 42.

  51. Sun Y, Ji J, Zha Z, Zhao H, Xue B, Jin L, Wang L (2021) Effect and mechanism of Catalpol on Remyelination via Regulation of the NOTCH1 Signaling Pathway. Front Pharmacol Feb 23:12:628209

    Article  Google Scholar 

  52. Jatana M, Singh I, Singh AK, Jenkins D (2006) Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 59(5):684–689

    Article  CAS  PubMed  Google Scholar 

  53. Liang JQ, Chen X, Cheng Y (2022) Paeoniflorin rescued MK-801-Induced Schizophrenia-Like Behaviors in mice via oxidative stress pathway. Front Nutr Apr 27:9:870032. https://doi.org/10.3389/fnut.2022.870032PMID: 35571896; PMCID: PMC9094402

    Article  CAS  Google Scholar 

  54. Takadera T, Matsuda I, Ohyashiki T (1999) Apoptotic cell death and caspase-3 activation induced by N-methyl-D-aspartate receptor antagonists and their prevention by insulin-like growth factor I. J Neurochem 73(2):548–556

    Article  CAS  PubMed  Google Scholar 

  55. Bozkurt NM, Unal G (2023) Vortioxetine improved negative and cognitive symptoms of schizophrenia in subchronic MK-801 model in rats. Behav Brain Res 444:114365. https://doi.org/10.1016/j.bbr.2023.114365

    Article  CAS  PubMed  Google Scholar 

  56. Bae HJ, Bae HJ, Kim JY, Park K, Yang X, Jung SY, Park SJ, Kim DH, Shin CY, Ryu JH (2023) The effect of lansoprazole on MK-801-induced schizophrenia-like behaviors in mice. Prog Neuro-psychopharmacol Biol Psychiatry 120:110646. https://doi.org/10.1016/j.pnpbp.2022.110646

    Article  CAS  Google Scholar 

  57. Shi XJ, Du Y, Lei-Chen, Li XS, Yao CQ, Cheng Y (2022) Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. J Psychiatr Res 156:538–546. https://doi.org/10.1016/j.jpsychires.2022.10.022

    Article  PubMed  Google Scholar 

  58. Lu C, Li S, Kang L, Li Q, Chen H, Lin Y, Zhang H, Tang Z, Bai M, Xiong P (2023) Aripiprazole combined with nerve growth factor improves cognitive function in mice with schizophrenia model. Neurosci Lett 812:137410. https://doi.org/10.1016/j.neulet.2023.137410

    Article  CAS  PubMed  Google Scholar 

  59. Patrono E, Hrůzova K, Svoboda J, Stuchlík A (2023) The role of optogenetic stimulations of parvalbumin-positive interneurons in the prefrontal cortex and the ventral hippocampus on an acute MK-801 model of schizophrenia-like cognitive inflexibility. Schizophr Res 252:198–205. https://doi.org/10.1016/j.schres.2022.12.047

    Article  CAS  PubMed  Google Scholar 

  60. Bonde C, Noraberg J, Zimmer J (2002) Nuclear shrinkage and other markers of neuronal cell death after oxygen-glucose deprivation in rat hippocampal slice cultures. Neurosci Lett. 12;327(1):49–52

  61. Kim TW, Kang HS, Park JK, Lee SJ, Baek SB, Kim CJ (2014) Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice. Mol Med Rep 10:2924–2930

    Article  CAS  PubMed  Google Scholar 

  62. Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 16(4910):1360–1362

    Article  Google Scholar 

  63. Abd-Ellah HF, Abou-Zeid NRA, Nasr NM (2018) The possible protective effect of N-acetyl-L-cysteine and folic acid in combination against aspartame-induced cerebral cortex neurotoxicity in adult male rats: a light and transmission electron microscopic study. Ultrastruct Pathol 42(3):228–245

    Article  PubMed  Google Scholar 

  64. Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J, Nikulina E, Grin’kina NM, Ramadani A, Hartman I, Bergold PJ (2018) Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab 38(8):1312–1326

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Scientific Research Project Coordination Unit at Afyon Kocatepe University (17.Kariyer.45).

Author information

Authors and Affiliations

Authors

Contributions

The idea of the research was recommended by M.S.A, who also took part in the design of the study. M.S.A. and R.T. performed the experimental work and wrote/drafted/edited the manuscript and interpreted the results. M.S.A., R.T. and H.H.D. performed the laboratory analyses. All authors were involved in revising the manuscript critically for important intellectual content, and all authors approved the final version to be published.

Corresponding author

Correspondence to Murat Sırrı Akosman.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

The Animal Experiments Local Ethics Board, Afyon Kocatepe University, Afyon (Registration number: AKUHADYEK-189-17) has approved this study.

Consent to participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sırrı Akosman, M., Türkmen, R. & Demirel, H.H. The protective effect of N-acetylcysteine against MK-801-induced neurodegeneration in mice. Mol Biol Rep 50, 10287–10299 (2023). https://doi.org/10.1007/s11033-023-08881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08881-9

Keywords

Navigation