Skip to main content

Advertisement

Log in

Research progress of good markers for canine mammary carcinoma

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose

Mammary gland tumors are the most common neoplastic diseases in elderly female dogs, about 50% of which are considered to be malignant. Canine mammary tumors are similar to human breast cancers in many respects, so canine mammary tumors are frequently studied alongside human breast cancer. This article mentioned KI-67, HER-2, COX-2, BRCA1, BRCA2, P53, CA15-3, MicroRNA, Top2α and so on. All these markers are expected to have an important role in the clinic.

Methods

Existing markers of canine mammary carcinoma are reviewed, and the expression of each marker and its diagnostic role for this tumor are described in detail.

Results

This article introduced several effective markers of canine mammary tumors, among them, antigen KI-67 (KI-67), human epidermal growth factor receptor 2 (HER-2), cyclooxygenase 2 (COX-2) are promising and can be detected in both serum and tissue samples. Breast cancer caused by mutations in the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) is also a hot topic of research. In addition to the above symbols, tumor protein p53 (p53), cancer antigen15-3 (CA15-3), MicroRNA (miRNA), topoisomerase πα (Top2α), proliferating cell nuclear antigen (PCNA), epidermal growth factor receptor (EGFR) and E-cadherin will also be involved in this paper. We will also mention Mammaglobin, which has been rarely reported so far.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Sleeckx N et al (2011) Canine mammary tumours, an overview. Reprod Domest Anim 46(6):1112–1131

    Article  CAS  PubMed  Google Scholar 

  2. Michishita M et al (2023) mTOR pathway as a potential therapeutic target for cancer stem cells in canine mammary carcinoma. Front Oncol 13:1100602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldschmidt M et al (2011) Classification and grading of canine mammary tumors. Vet Pathol 48(1):117–131

    Article  CAS  PubMed  Google Scholar 

  4. Queiroga FL et al (2011) Canine mammary tumours as a model to study human breast cancer: most recent findings. In Vivo 25(3):455–465

    PubMed  Google Scholar 

  5. Kaszak I et al (2022) The novel diagnostic techniques and biomarkers of canine mammary tumors. Vet Sci 9(10):526

  6. Peña L et al (2014) Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet Pathol 51(1):127–145

    Article  PubMed  Google Scholar 

  7. Kim TM et al (2020) Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat Commun 11(1):3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Billard P, Poncet DA (2019) Replication stress at telomeric and mitochondrial DNA: common origins and consequences on ageing. Int J Mol Sci 20(19):4959

  9. Ogino M et al (2020) Implications of topoisomerase (TOP1 and TOP2α) expression in patients with breast cancer. In Vivo 34(6):3483–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J et al (2012) TOP2A amplification in breast cancer is a predictive marker of anthracycline-based neoadjuvant chemotherapy efficacy. Breast Cancer Res Treat 135(2):531–537

    Article  CAS  PubMed  Google Scholar 

  11. Romero A et al (2012) Topoisomerase 2 alpha: a real predictor of anthracycline efficacy? Clin Transl Oncol 14(3):163–168

    Article  CAS  PubMed  Google Scholar 

  12. Oliveira TF et al (2017) TP53 gene expression levels and tumor aggressiveness in canine mammary carcinomas. J Vet Diagn Invest 29(6):865–868

    Article  CAS  PubMed  Google Scholar 

  13. Valdivia G et al (2021) From conventional to precision therapy in canine mammary cancer: a comprehensive review. Front Vet Sci 8:623800

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brunetti B et al (2021) p53, ER, and Ki67 expression in canine mammary carcinomas and correlation with pathological variables and prognosis. Vet Pathol 58(2):325–331

    Article  CAS  PubMed  Google Scholar 

  15. Wang LL et al (2017) PTEN/PI3K/AKT protein expression is related to clinicopathological features and prognosis in breast cancer with axillary lymph node metastases. Hum Pathol 61:49–57

    Article  CAS  PubMed  Google Scholar 

  16. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  CAS  PubMed  Google Scholar 

  17. Mascitti M et al (2020) p53-family proteins in odontogenic cysts: an immunohistochemical study. Appl Immunohistochem Mol Morphol 28(5):369–375

    Article  CAS  PubMed  Google Scholar 

  18. Hugo HJ et al (2015) New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J Mammary Gland Biol Neoplasia 20(3–4):109–119

    Article  PubMed  Google Scholar 

  19. Araújo MR et al (2016) HER-2, EGFR, Cox-2 and Ki67 expression in lymph node metastasis of canine mammary carcinomas: association with clinical-pathological parameters and overall survival. Res Vet Sci 106:121–130

    Article  PubMed  Google Scholar 

  20. Queiroga FL et al (2010) The role of Cox-2 expression in the prognosis of dogs with malignant mammary tumours. Res Vet Sci 88(3):441–445

    Article  CAS  PubMed  Google Scholar 

  21. de MSCH et al (2009) Inflammatory mammary carcinoma in 12 dogs: clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can Vet J 50(5):506–510

    Google Scholar 

  22. Hurst EA, Pang LY, Argyle DJ (2019) The selective cyclooxygenase-2 inhibitor mavacoxib (Trocoxil) exerts anti-tumour effects in vitro independent of cyclooxygenase-2 expression levels. Vet Comp Oncol 17(2):194–207

    Article  CAS  PubMed  Google Scholar 

  23. Hu L et al (2017) Clinical significance of expression of proliferating cell nuclear antigen and E-cadherin in gastric carcinoma. World J Gastroenterol 23(20):3721–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tchounga B et al (2021) Human papilloma viruses infection among adolescent females perinatally infected with HIV in Côte d’Ivoire. Sex Transm Infect 97(3):238–243

    Article  PubMed  Google Scholar 

  25. Juríková M et al (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118(5):544–552

    Article  PubMed  Google Scholar 

  26. Aydogan A et al (2018) Immunohistochemical evaluation of bcl-2, ER-alpha, caspase -3, -8, -9, PCNA and Ki-67 expressions in canine mammary carcinomas. Biotech Histochem 93(4):286–292

    Article  CAS  PubMed  Google Scholar 

  27. Cardano M, Tribioli C, Prosperi E (2020) Targeting Proliferating Cell Nuclear Antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation. Curr Cancer Drug Targets 20(4):240–252

    Article  CAS  PubMed  Google Scholar 

  28. Zhang A et al (2021) The role of Ki67 in evaluating neoadjuvant endocrine therapy of hormone receptor-positive breast cancer. Front Endocrinol (Lausanne) 12:687244

    Article  PubMed  Google Scholar 

  29. Rivera P et al (2009) Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res 69(22):8770–8774

    Article  CAS  PubMed  Google Scholar 

  30. Queiroga FL et al (2015) Serum and tissue steroid hormone levels in canine mammary tumours: clinical and prognostic implications. Reprod Domest Anim 50(5):858–865

    Article  CAS  PubMed  Google Scholar 

  31. Yerushalmi R et al (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11(2):174–183

    Article  CAS  PubMed  Google Scholar 

  32. Nowak M et al (2015) Expression of matrix metalloproteinase 2 (MMP-2), E-cadherin and Ki-67 in metastatic and non-metastatic canine mammary carcinomas. Ir Vet J 69:9

    Article  PubMed  Google Scholar 

  33. Steven A et al (2013) HER-2/neu mediates oncogenic transformation via altered CREB expression and function. Mol Cancer Res 11(11):1462–1477

    Article  CAS  PubMed  Google Scholar 

  34. Yu C et al (2022) The analysis of E-cadherin, N-cadherin, vimentin, HER-2, CEA, CA15–3 and SF expression in the diagnosis of canine mammary tumors. Animals (Basel) 12(21):3050

  35. Tsé C et al (2012) HER2 shedding and serum HER2 extracellular domain: biology and clinical utility in breast cancer. Cancer Treat Rev 38(2):133–142

    Article  PubMed  Google Scholar 

  36. Barnard ME, Boeke CE, Tamimi RM (2015) Established breast cancer risk factors and risk of intrinsic tumor subtypes. Biochim Biophys Acta 1856(1):73–85

    CAS  PubMed  Google Scholar 

  37. Shinoda H et al (2014) Significance of ERα, HER2, and CAV1 expression and molecular subtype classification to canine mammary gland tumor. J Vet Diagn Invest 26(3):390–403

    Article  CAS  PubMed  Google Scholar 

  38. Fan Y et al (2021) Combined detection of CA15-3, CEA, and SF in serum and tissue of canine mammary gland tumor patients. Sci Rep 11(1):6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manuali E et al (2012) CA 15–3 cell lines and tissue expression in canine mammary cancer and the correlation between serum levels and tumour histological grade. BMC Vet Res 8:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain M et al (2021) CEA, CA 15–3, and miRNA expression as potential biomarkers in canine mammary tumors. Chromosome Res 29(2):175–188

    Article  CAS  PubMed  Google Scholar 

  41. Lu F et al (2021) The clinical application value of RDW, CA153, and MPV in breast cancer. Clin Lab. https://doi.org/10.7754/Clin.Lab.2020.200507

  42. Tang S et al (2016) CA153 in breast secretions as a potential molecular marker for diagnosing breast cancer: a meta analysis. PLoS ONE 11(9):e0163030

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carvalho MI et al (2013) EGFR and microvessel density in canine malignant mammary tumours. Res Vet Sci 95(3):1094–1099

    Article  CAS  PubMed  Google Scholar 

  44. Gama A et al (2009) Immunohistochemical expression of Epidermal Growth Factor Receptor (EGFR) in canine mammary tissues. Res Vet Sci 87(3):432–437

    Article  CAS  PubMed  Google Scholar 

  45. Sakalauskaitė S et al (2021) VEGF-B, VEGF-A, FLT-1, KDR, ERBB2, EGFR, GRB2, RAC1, CDH1 and HYAL-1 genes expression analysis in canine mammary gland tumors and the association with tumor clinicopathological parameters and dog breed assessment. Vet Sci 8(10):212

  46. Carvalho MI et al (2015) Positive interplay between CD3+ T-lymphocytes and concurrent COX-2/EGFR expression in canine malignant mammary tumors. Anticancer Res 35(5):2915–2920

    PubMed  Google Scholar 

  47. Ferreira E et al (2012) Histological and immunohistochemical identification of atypical ductal mammary hyperplasia as a preneoplastic marker in dogs. Vet Pathol 49(2):322–329

    Article  CAS  PubMed  Google Scholar 

  48. Alonso-Diez A et al (2022) Cell adhesion molecules E-cadherin and CADM1 are differently expressed in canine inflammatory mammary cancer. Res Vet Sci 152:307–313

    Article  CAS  PubMed  Google Scholar 

  49. da Rocha AA, Carvalheira J, Gärtner F (2020) α-catenin, β-catenin and P-120-catenin immunoexpression in canine mammary tissues and their relationship with E-cadherin. Res Vet Sci 130:197–202

    Article  PubMed  Google Scholar 

  50. Na TY et al (2020) The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci USA 117(11):5931–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Asproni P et al (2015) Co-localization of PTEN and E-cadherin in canine mammary hyperplasias and benign and malignant mammary tumors. Res Vet Sci 103:113–118

    Article  CAS  PubMed  Google Scholar 

  52. Wei J et al (2011) Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer 30(6):407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petroušková P et al (2022) Non-exosomal and exosome-derived miRNAs as promising biomarkers in canine mammary cancer. Life (Basel) 12(4):524

  54. Chen Y et al (2023) Transcriptional profiling of exosomes derived from plasma of canine with mammary tumor by RNA-seq analysis. Genomics 115(4):110660

    Article  CAS  PubMed  Google Scholar 

  55. Fish EJ et al (2020) Circulating microRNA as biomarkers of canine mammary carcinoma in dogs. J Vet Intern Med 34(3):1282–1290

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bulkowska M et al (2017) MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours. BMC Cancer 17(1):728

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fish EJ et al (2018) Malignant canine mammary epithelial cells shed exosomes containing differentially expressed microRNA that regulate oncogenic networks. BMC Cancer 18(1):832

    Article  PubMed  PubMed Central  Google Scholar 

  58. Johnson KE et al (2020) The relationship between circulating lipids and breast cancer risk: a Mendelian randomization study. PLoS Med 17(9):e1003302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ulaner GA et al (2016) Molecular imaging of biomarkers in breast cancer. J Nucl Med 57(Suppl 1):53s-s59

    Article  CAS  PubMed  Google Scholar 

  60. Geyer PE et al (2017) Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 13(9):942

    Article  PubMed  PubMed Central  Google Scholar 

  61. Varallo GR et al (2019) Global gene expression profile in canine mammary carcinomas. Vet J 254:105393

    Article  CAS  PubMed  Google Scholar 

  62. Marchetti C et al (2018) Hormone replacement therapy after prophylactic risk-reducing salpingo-oophorectomy and breast cancer risk in BRCA1 and BRCA2 mutation carriers: a meta-analysis. Crit Rev Oncol Hematol 132:111–115

    Article  CAS  PubMed  Google Scholar 

  63. Enginler SO et al (2014) Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours. Vet Res Commun 38(1):21–27

    Article  CAS  PubMed  Google Scholar 

  64. Manchanda R et al (2020) Economic evaluation of population-based BRCA1/BRCA2 mutation testing across multiple countries and health systems. Cancers (Basel) 12(7):1929

  65. Filippini SE, Vega A (2013) Breast cancer genes: beyond BRCA1 and BRCA2. Front Biosci (Landmark Ed) 18(4):1358–1372

    Article  CAS  PubMed  Google Scholar 

  66. Yoshikawa Y et al (2015) Reduced canine BRCA2 expression levels in mammary gland tumors. BMC Vet Res 11:159

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pandey M et al (2018) Over-expression of mammaglobin-B in canine mammary tumors. BMC Vet Res 14(1):184

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pandey M, Kumar BV, Verma R (2015) Mammaglobin as a diagnostic serum marker of complex canine mammary carcinomas. Res Vet Sci 103:187–192

    Article  CAS  PubMed  Google Scholar 

  69. Zheng H et al (2022) The development of molecular typing in canine mammary carcinomas. Mol Biol Rep 49(9):8943–8951

    Article  CAS  PubMed  Google Scholar 

  70. Ferreira T et al (2023) Mammary glands of women, female dogs and female rats: similarities and differences to be considered in breast cancer research. Vet Sci 10(6):379

  71. Borges BDN (2022) Epigenetic alterations in canine mammary cancer. Genet Mol Biol 45(3 Suppl 1):e20220131

    Article  PubMed  PubMed Central  Google Scholar 

  72. Burrai GP et al (2022) Canine and feline in situ mammary carcinoma: a comparative review. Vet Pathol 59(6):894–902

    Article  CAS  PubMed  Google Scholar 

  73. Chmielewska-Krzesińska M, Jakimiuk A, Wąsowicz K (2019) Stability of αB-crystallin gene expression in canine mammary gland neoplasms. Should it be considered as circulating tumor cell genetic marker. Pol J Vet Sci 22(3):523–529

    PubMed  Google Scholar 

  74. Camacho L et al (2014) Immunohistochemical vascular factor expression in canine inflammatory mammary carcinoma. Vet Pathol 51(4):737–748

    Article  CAS  PubMed  Google Scholar 

  75. Bearss JJ, Schulman FY, Carter D (2012) Histologic, immunohistochemical, and clinical features of 27 mammary tumors in 18 male dogs. Vet Pathol 49(4):602–607

    Article  CAS  PubMed  Google Scholar 

  76. Park HM et al (2020) Common plasma protein marker LCAT in aggressive human breast cancer and canine mammary tumor. BMB Rep 53(12):664–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Senhorello ILS et al (2020) Clinical value of carcinoembryonic antigen in mammary neoplasms of bitches. Vet Comp Oncol 18(3):315–323

    Article  CAS  PubMed  Google Scholar 

  78. Nam AR et al (2023) The landscape of PBMC methylome in canine mammary tumors reveals the epigenetic regulation of immune marker genes and its potential application in predicting tumor malignancy. BMC Genom 24(1):403

    Article  CAS  Google Scholar 

  79. Sánchez-Céspedes R et al (2013) Use of CD10 as a marker of canine mammary myoepithelial cells. Vet J 195(2):192–199

    Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by grants from the National Science Foundation of China (Grant Nos. 32273075, 31672616).

Author information

Authors and Affiliations

Authors

Contributions

NYY devised, structured, and wrote the manuscript. All the authors reviewed and corrected the manuscript.

Corresponding author

Correspondence to Guang-Hong Xie.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, NY., Zheng, HH., Yu, C. et al. Research progress of good markers for canine mammary carcinoma. Mol Biol Rep 50, 10617–10625 (2023). https://doi.org/10.1007/s11033-023-08863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08863-x

Keywords

Navigation