Skip to main content
Log in

Single nucleotide polymorphism rs527236194 of the cytochrome B gene (MT-CYB) is associated with alterations in sperm parameters

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The mitochondrial genome is substantially susceptible to mutations and has high polymorphism due to structural features, location, and lack of recombinant variability, as its inheritance is strictly maternal. All of these events can be accompanied by the accumulation of mitochondrial single nucleotide polymorphisms (mtSNPs) in the sperm. The aim of this research was to analyze the influence of mutations in the MT-CYB gene on sperm quality.

Methods and results

We conducted a case‒control study to identify mutations in the mitochondrial cytochrome B (MT-CYB) gene in men with asthenoteratozoospermia (89 cases) and oligoasthenoteratozoospermia (65 cases). The comparison group consisted of 164 fertile men. Somatic cell lysis followed by mtDNA extraction was conducted to analyze three mtDNA polymorphisms, rs28357373 (T15629C (Leu295=), rs527236194 (T15784C (p.Pro346=), rs2853506 (A15218G, p.Thr158Ala). Detection and genotyping of polymorphic loci in the MT-CYB gene was performed using the TaqMan allelic discrimination assay. To verify mutations in the MT-CYB gene, automated Sanger DNA sequencing was used. We found that rs527236194 was associated with asthenoteratozoospermia. rs28357373 in the MT-CYB gene did not show any polymorphism in the analyzed groups, which indicates a rare frequency of the TT genotype in our region. Rs28357373 and rs2853506 are not associated with male sperm abnormalities in the Volga-Ural region.

Conclusion

The association of the rs527236194 polymorphic variant with sperm parameter alterations suggests its role in the pathophysiology of male infertility and requires further investigation in larger samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The allelic discrimination data may be provided upon request to the corresponding author.

References

  1. Agarwal A, Baskaran S, Parekh N, Cho C, Henkel R, Vij S et al (2021) Male infertility. Lancet 397(10271):319–333. https://doi.org/10.1016/S0140-6736(20)32667-2

    Article  PubMed  Google Scholar 

  2. Minhas S, Bettocchi C, Boeri L, Capogrosso P, Carvalho J, Cilesiz N et al (2021) EAU Working Group on male sexual and Reproductive Health. EAU Guidelines on male sexual and Reproductive Health: 2021 update on male infertility. Eur Urol 80(5):603–620. https://doi.org/10.1016/j.eururo.2021.08.014

    Article  PubMed  Google Scholar 

  3. Park YJ, Pang MG (2021) Mitochondrial functionality in male fertility: from spermatogenesis to fertilization. Antioxidants 10(1):98. https://doi.org/10.3390/antiox10010098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vertika S, Singh K, Rajender S (2020) Mitochondria, spermatogenesis, and male infertility - an update. Mitochondrion 54:26–40. https://doi.org/10.1016/j.mito.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  5. Gonçalves V (2019) Mitochondrial Genetics. Adv Exp Med Biol 1158:247–255. https://doi.org/10.1007/978-981-13-8367-0_13

    Article  CAS  PubMed  Google Scholar 

  6. Li GQ, He Y (2017) Sperm mitochondrial DNA and male infertility: an update. Zhonghua Nan Ke Xue 23(9):848–851 Available from: PMID: 29726669. [Article in Chinese]

    PubMed  Google Scholar 

  7. Pavlov V, Galimova E, Teregulov B, Kaybishev V, Galimov S (2016) Molekulyarnye i metabolicheskiye aspekty muzhskogo besplodiya [Molecular and metabolic aspects of male infertility]. Vestnik Urologii 4(2):40–59. https://doi.org/10.21886/2308-6424-2016-0-2-40-59[Article in Russian]

    Article  Google Scholar 

  8. Van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30(2):E386–E394. https://doi.org/10.1002/humu.20921

    Article  PubMed  Google Scholar 

  9. Andersen M, Balding D (2018) How many individuals share a mitochondrial genome? PLoS Genet 14(11):e1007774. https://doi.org/10.1371/journal.pgen.1007774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dzudzor B, Bimah B, Amarh V, Ocloo A (2021) Sperm parameters and mitochondrial DNA sequence variants among patients at a fertility clinic in Ghana. PLoS ONE 16(6):e0252923. https://doi.org/10.1371/journal.pone.0252923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mao G, Wang Y, Xu M, Wang W, Tan L, Tao S (2015) Polymorphisms in the MT-ATP6 and MT-CYB genes in in vitro fertilization failure. Mitochondrial DNA 26(1):20–24. https://doi.org/10.3109/19401736.2013.840612

    Article  CAS  PubMed  Google Scholar 

  12. Karimian M, Babaei F (2020) Large-scale mtDNA deletions as genetic biomarkers for susceptibility to male infertility: a systematic review and meta-analysis. Int J Biol Macromol 158:85–93. https://doi.org/10.1016/j.ijbiomac.2020.04.216

    Article  CAS  PubMed  Google Scholar 

  13. Popova D, Bhide P, D’Antonio F, Basnet P, Acharya G (2021) Sperm mitochondrial DNA copy numbers in normal and abnormal semen analysis: a systematic review and meta-analysis. Br J Obstet Gynaecol 129(9):1434–1446. https://doi.org/10.1111/1471-0528.17078

    Article  CAS  Google Scholar 

  14. Saleh Jaweesh M, Hammadeh M, Dahadhah F, Al Zoubi M, Amor H (2022) Association between the single nucleotide variants of the mitochondrial cytochrome B gene (MT-CYB) and the male infertility. Mol Biol Rep 49(5):3609–3616. https://doi.org/10.1007/s11033-022-07200-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keightley JA, Anitori R, Burton MD, Quan F, Buist NR, Kennaway NG (2000) Mitochondrial encephalomyopathy and complex III deficiency associated with a stop-codon mutation in the cytochrome b gene. Am J Hum Genet 67(6):1400–1410. https://doi.org/10.1086/316900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amor H, Hammadeh ME (2022) A systematic review of the impact of mitochondrial variations on male infertility. Genes 13(7):1182. https://doi.org/10.3390/genes13071182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fedorova S, Reidla M, Metspalu E, Metspalu M, Rootsi S, Tambets K et al (2013) Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol Biol 13:127. https://doi.org/10.1186/1471-2148-13-127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schurr T, Sukernik R, Starikovskaya Y, Wallace D (1999) Mitochondrial DNA variation in Koryaks and Itel’men: population replacement in the Okhotsk Sea-Bering Sea region during the neolithic. Am J Phys Anthropol 108(1):1–39. https://doi.org/10.1002/(SICI)1096-8644(199901)108:1<1::AID-AJPA1>3.0.CO;2-1

  19. Trofimova N (2015) Izmenchivost mitokhondrialnoy DNK i Y-khromosomy v populyatsiyakh Volgo-Uralskogo regiona. Dissertation. UFRC RAS. Available from: http://i64.library.bashgmu.ru/irbis64r_14/cgi-bin/irbis64r_14/cgiirbis_64.exe?Z21ID=&P21DBN=BSMU&I21DBN=BSMU&S21FMT=fullwebr&C21COM=S&2_S21P02=0&2_S21P03=I=&2_S21STR=%D0%9055680 [Accessed 3rd September 2023]

  20. Krausz C, Riera-Escamilla A (2018) Genetics of male infertility. Nat Reviews Urol 15(6):369–384. https://doi.org/10.1038/s41585-018-0003-3

    Article  CAS  Google Scholar 

  21. Litvitskiy P, Galimov K, Gromenko Y, Galimova S, Gilyazova I, Galimova E et al (2022) Rol mitokhondriy spermatozoidov v vozniknovenii i razvitii muzhskogo besplodiya [The role of sperm mitochondria in the development of male infertility]. 66(2):72–79 [Article in Russian]. Patologicheskaya fiziologia i eksperimentalnaya terapiya

  22. Ritchie C, Ko E (2021) Oxidative stress in the pathophysiology of male infertility. Rev Andrologia 53(1):e13581. https://doi.org/10.1111/and.13581

    Article  Google Scholar 

  23. Wang JJ, Wang SX, Tehmina, Feng Y, Zhang RF, Li XY et al (2022) Age-Related decline of male fertility: mitochondrial dysfunction and the antioxidant interventions. Pharmaceuticals (Basel) 15(5):519. https://doi.org/10.3390/ph15050519

    Article  CAS  PubMed  Google Scholar 

  24. Talebi E, Karimian M, Nikzad H (2018) Association of sperm mitochondrial DNA deletions with male infertility in an iranian population. Mitochondrial DNA Part A: DNA Mapping Sequencing Analysis 29(4):615–623. https://doi.org/10.1080/24701394.2017.1331347

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Zhao Y, Wen S, Yan R, Yang Q, Chen H (2017) Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population. Mitochondrial DNA Part A: DNA Mapping Sequencing Analysis 28(5):725–731. https://doi.org/10.1080/24701394.2016.1177038

    Article  CAS  PubMed  Google Scholar 

  26. Lestienne P, Reynier P, Chrétien M, Penisson-Besnier I, Malthièry Y, Rohmer V (1997) Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Molecular Human Reproduction. ;3(9):811-4. https://doi.org/10.1093/molehr/3.9.811. PMID: 9358008

  27. Mughal I, Irfan A, Jahan S, Hameed A (2017) Male infertility is significantly associated with multiple deletions in an 8.7-kb segment of sperm mtDNA in Pakistan. Turk J Med Sci 47(3):928–933. https://doi.org/10.3906/sag-1606-52

    Article  CAS  PubMed  Google Scholar 

  28. Rosati A, Whitcomb B, Brandon N, Buck Louis G, Mumford S, Schisterman E et al (2020) Sperm mitochondrial DNA biomarkers and couple fecundity. Hum Reprod 35(11):2619–2625. https://doi.org/10.1093/humrep/deaa191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vozdova M, Kubickova S, Kopecka V, Sipek J, Rubes J (2022) Association between sperm mitochondrial DNA copy number and deletion rate and industrial air pollution dynamics. Scientific Reports. ;12:8324. Available from: https://doi.org/10.1038/s41598-022-12328-9

  30. Darehbagh R, Khalafi B, Allahveisi A, Habiby M (2022) Effects of the mitochondrial genome on germ cell fertility: a review of the literature. Int J Fertility Steril 16(2):70–75. https://doi.org/10.22074/IJFS.2021.527076.1098

    Article  CAS  Google Scholar 

  31. Fu L, Luo Y, Liu Y, Liu H, Li H, Yu Y (2021) Potential of mitochondrial genome editing for human Fertility Health. Front Genet 12:673951. https://doi.org/10.3389/fgene.2021.673951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partially funded by the Bashkir State Medical University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadii A. Piavchenko.

Ethics declarations

Ethical approval

The study was approved by the Local Ethics Committee of Bashkir State Medical University (Protocol No. 8, Dec 14, 2022). The study was carried out in accordance with the principles of the Declaration of Helsinki.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromenko, Y.Y., Galimov, K.S., Gilyazova, I.R. et al. Single nucleotide polymorphism rs527236194 of the cytochrome B gene (MT-CYB) is associated with alterations in sperm parameters. Mol Biol Rep 50, 10131–10136 (2023). https://doi.org/10.1007/s11033-023-08849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08849-9

Keywords

Navigation