Skip to main content
Log in

Assessing the gene expression of the adenosine 5′-monophosphate-activated protein kinase (AMPK) and its relation with the IL-6 and IL-10 plasma levels in COVID-19 patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Metabolic dysregulation and excessive inflammation are implicated in the pathogenesis of the highly infectious disease of coronavirus disease 2019 (COVID-19), which is caused by a newly emerging coronavirus (i.e., severe acute respiratory syndrome-coronavirus 2; SARS-CoV-2). The adenosine 5′-monophosphate-activated protein kinase (AMPK), an energy sensor regulating the metabolic pathways in diverse cells, exerts a regulatory role in the immune system. This study aims to examine the mRNA expression level of AMPK and the plasma levels of interleukin-6 (IL-6) and IL-10 cytokines in patients with different grades of COVID-19.

Methods

Peripheral blood was collected from 60 patients with COVID-19 (Moderate, severe, and critical). The plasma levels of IL-6 and IL-10 were quantified by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression level of AMPK was determined using real-time PCR.

Results

The results showed that the plasma levels of IL-6 increased significantly in critical and severe patients compared to moderate cases of COVID-19 (P < 0.001). Moreover, IL-10 plasma concentrations were significantly higher in critical and severe cases than in moderate cases of COVID-19 (P < 0.01 and P < 0.05, respectively). Also, the gene expression of AMPK was meaningfully enhanced in critical patients relative to moderate and severe cases of COVID-19, in order (P < 0.001 and P < 0.01, respectively). There was a positive association between AMPK gene expression and plasma levels of IL-6 and IL-10 (P = 0.006, r = 0.348, P = 0.028, r = 0.283, respectively).

Conclusion

Increasing AMPK gene expression is likely a necessary effort of the immune system to inhibit inflammation in critical COVID-19. However, this effort seems to be inadequate, probably due to factors that induce inflammation, like erythrocyte sedimentation rate (ESR) and IL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

Abbreviations

AMPK:

Adenosine 5′-monophosphate-activated protein kinase

COVID-19:

Coronavirus disease 2019

SARS-CoV-2:

Severe acute respiratory syndrome-coronavirus 2

IL-10:

Interleukin-10

CRS:

Cytokine release syndrome

ELISA:

Enzyme-linked immunosorbent assay

qRT-PCR:

Quantitative real-time polymerase chain reaction

ESR:

Erythrocyte sedimentation rate

References

  1. Lotfi R, Kalmarzi RN, Roghani SA (2021) A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol Res 69(3):213–224. https://doi.org/10.1007/s12026-021-09198-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siracusano G, Pastori C, Lopalco L (2020) Humoral Immune responses in COVID-19 patients: a window on the state of the art. Front Immunol 11:1049. https://doi.org/10.3389/fimmu.2020.01049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deravi N, Ahsan E, Fathi M, Hosseini P, Yaghoobpoor S, Lotfi R, Pourbagheri-Sigaroodi A, Bashash D (2022) Complement inhibition: a possible therapeutic approach in the fight against Covid-19. Rev Med Virol 32(4):e2316. https://doi.org/10.1002/rmv.2316

    Article  CAS  PubMed  Google Scholar 

  4. Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S (2020) The COVID-19 pandemic. Crit Rev Clin Lab Sci 57(6):365–388. https://doi.org/10.1080/10408363.2020.1783198

    Article  CAS  PubMed  Google Scholar 

  5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim J (2018) Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res 2018:8605471. https://doi.org/10.1155/2018/8605471

  7. Bettencourt IA, Powell JD (2017) Targeting metabolism as a Novel Therapeutic Approach to Autoimmunity, inflammation, and transplantation. J Immunol 198(3):999–1005. https://doi.org/10.4049/jimmunol.1601318

    Article  CAS  PubMed  Google Scholar 

  8. Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA (2021) SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 12(1):3818. https://doi.org/10.1038/s41467-021-24007-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang YP (2022) COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (2020) 3 (3):e157. https://doi.org/10.1002/mco2.157

  10. Oakhill JS, Chen ZP, Scott JW, Steel R, Castelli LA, Ling N, Macaulay SL, Kemp BE (2010) β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci U S A 107(45):19237–19241. https://doi.org/10.1073/pnas.1009705107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bhutta MS, Gallo ES, Borenstein R (2021) Multifaceted role of AMPK in viral infections. Cells 10(5):1118. https://doi.org/10.3390/cells10051118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181(12):8633–8641. https://doi.org/10.4049/jimmunol.181.12.8633

    Article  CAS  PubMed  Google Scholar 

  13. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, Jones RG (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 187(8):4187–4198. https://doi.org/10.4049/jimmunol.1100367

    Article  CAS  PubMed  Google Scholar 

  14. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908. https://doi.org/10.1101/gad.17420111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mancini SJ, Salt IP (2018) Investigating the role of AMPK in inflammation. Methods Mol Biol 1732:307–319. https://doi.org/10.1007/978-1-4939-7598-3_20

    Article  CAS  PubMed  Google Scholar 

  16. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89(7):667–676. https://doi.org/10.1007/s00109-011-0748-0

    Article  CAS  PubMed  Google Scholar 

  17. Yin JX, Agbana YL, Sun ZS, Fei SW, Zhao HQ, Zhou XN, Chen JH, Kassegne K (2023) Increased interleukin-6 is associated with long COVID-19: a systematic review and meta-analysis. Infect Dis Poverty 12(1):43. https://doi.org/10.1186/s40249-023-01086-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nerstedt A, Johansson A, Andersson CX, Cansby E, Smith U, Mahlapuu M (2010) AMP-activated protein kinase inhibits IL-6-stimulated inflammatory response in human liver cells by suppressing phosphorylation of signal transducer and activator of transcription 3 (STAT3). Diabetologia 53(11):2406–2416. https://doi.org/10.1007/s00125-010-1856-z

    Article  CAS  PubMed  Google Scholar 

  19. Zhu YP, Brown JR, Sag D, Zhang L, Suttles J (2015) Adenosine 5’-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol 194(2):584–594. https://doi.org/10.4049/jimmunol.1401024

    Article  CAS  PubMed  Google Scholar 

  20. Saraiva M, Vieira P, O’Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217(1):e20190418. https://doi.org/10.1084/jem.20190418

    Article  CAS  PubMed  Google Scholar 

  21. Lu L, Zhang H, Dauphars DJ, He YW (2021) A potential role of Interleukin 10 in COVID-19 pathogenesis. Trends Immunol 42(1):3–5. https://doi.org/10.1016/j.it.2020.10.012

    Article  CAS  PubMed  Google Scholar 

  22. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, Yuan Z, Feng Z, Zhang Y, Wu Y, Chen Y (2020) Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). Front Immunol 11:827. https://doi.org/10.3389/fimmu.2020.00827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, Zhang P, Liu X, Gao G, Liu F, Jiang Y, Cheng X, Zhu C, Xia Y (2020) Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 9(1):1123–1130. https://doi.org/10.1080/22221751.2020.1770129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szewczuk M, Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT (2020) The role of AMPK in metabolism and its influence on DNA damage repair. Mol Biol Rep 47(11):9075–9086. https://doi.org/10.1007/s11033-020-05900-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Juszczak F, Caron N, Mathew AV, Declèves AE (2020) Critical role for AMPK in Metabolic Disease-Induced chronic kidney disease. Int J Mol Sci 21(21):7994. https://doi.org/10.3390/ijms21217994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M (2020) Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: a molecular landscape. Eur J Pharmacol 888:173376. https://doi.org/10.1016/j.ejphar.2020.173376

    Article  CAS  PubMed  Google Scholar 

  28. Dasgupta B, Chhipa RR (2016) Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends Pharmacol Sci 37(3):192–206. https://doi.org/10.1016/j.tips.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, Cruz-Martins N, Batiha GE (2021) COVID-19 and risk of Acute Ischemic Stroke and Acute Lung Injury in patients with type II diabetes Mellitus: the anti-inflammatory role of Metformin. Front Med (Lausanne) 8644295. https://doi.org/10.3389/fmed.2021.644295

  30. Kratzel A, Kelly JN, V’Kovski P, Portmann J, Brüggemann Y, Todt D, Ebert N, Shrestha N, Plattet P, Staab-Weijnitz CA, von Brunn A, Steinmann E, Dijkman R, Zimmer G, Pfaender S, Thiel V (2021) A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets. PLoS Biol 19(12):e3001490. https://doi.org/10.1371/journal.pbio.3001490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yim WW, Mizushima N (2021) Autophagosome maturation stymied by SARS-CoV-2. Dev Cell 56(4):400–402. https://doi.org/10.1016/j.devcel.2021.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao Z, Lu K, Mao B, Liu S, Trilling M, Huang A, Lu M, Lin Y (2021) The interplay between emerging human coronavirus infections and autophagy. Emerg Microbes Infect 10(1):196–205. https://doi.org/10.1080/22221751.2021.1872353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qu Y, Wang X, Zhu Y, Wang W, Wang Y, Hu G, Liu C, Li J, Ren S, Xiao MZX, Liu Z, Wang C, Fu J, Zhang Y, Li P, Zhang R, Liang Q (2021) ORF3a-Mediated incomplete autophagy facilitates severe Acute Respiratory Syndrome Coronavirus-2 replication. Front Cell Dev Biol 9:716208. https://doi.org/10.3389/fcell.2021.716208

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, Bi Y, Wang P, Zhang H (2021) ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell 56(4):427–442e425. https://doi.org/10.1016/j.devcel.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  35. Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, Rajagopal S, Pai AR, Kutty S (2020) Cytokine storm in COVID-19-Immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM Consortium position paper. Front Immunol 11:1648. https://doi.org/10.3389/fimmu.2020.01648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ (2020) Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 55(5):105954. https://doi.org/10.1016/j.ijantimicag.2020.105954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, Wang Q, Miao H (2020) Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 5(1):33. https://doi.org/10.1038/s41392-020-0148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abbasifard M, Khorramdelazad H (2020) The bio-mission of interleukin-6 in the pathogenesis of COVID-19: a brief look at potential therapeutic tactics. Life Sci 257:118097. https://doi.org/10.1016/j.lfs.2020.118097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang D, Zhou X, Yan S, Tian R, Su L, Ding X, Xiao M, Chen Y, Zhao H, Chen H, Zhang H, Li Z, Li Q, Xu Y, Yan X, Li Y, Zhang S (2020) Correlation between cytokines and coagulation-related parameters in patients with coronavirus disease 2019 admitted to ICU. Clin Chim Acta 510:47–53. https://doi.org/10.1016/j.cca.2020.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levi M, van der Poll T, ten Cate H, van Deventer SJ (1997) The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur J Clin Invest 27(1):3–9. https://doi.org/10.1046/j.1365-2362.1997.570614.x

    Article  CAS  PubMed  Google Scholar 

  41. Levi M, van der Poll T (2005) Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med 15(7):254–259. https://doi.org/10.1016/j.tcm.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  42. Du F, Liu B, Zhang S (2021) COVID-19: the role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness. J Thromb Thrombolysis 51(2):313–329. https://doi.org/10.1007/s11239-020-02224-2

    Article  CAS  PubMed  Google Scholar 

  43. Que Y, Hu C, Wan K, Hu P, Wang R, Luo J, Li T, Ping R, Hu Q, Sun Y, Wu X, Tu L, Du Y, Chang C, Xu G (2022) Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol 41(2):217–230. https://doi.org/10.1080/08830185.2021.1884248

    Article  CAS  PubMed  Google Scholar 

  44. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B, Ding J, Li F (2020) Detectable serum severe Acute Respiratory Syndrome Coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with Coronavirus Disease 2019. Clin Infect Dis 71(8):1937–1942. https://doi.org/10.1093/cid/ciaa449

    Article  CAS  PubMed  Google Scholar 

  45. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229):1054–1062. https://doi.org/10.1016/s0140-6736(20)30566-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gong J, Dong H, Xia QS, Huang ZY, Wang DK, Zhao Y, Liu WH, Tu SH, Zhang MM, Wang Q, Lu FE (2020) Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19: a retrospective study. BMC Infect Dis 20(1):963. https://doi.org/10.1186/s12879-020-05681-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu X, Wang H, Shi S, Xiao J (2022) Association between IL-6 and severe disease and mortality in COVID-19 disease: a systematic review and meta-analysis. Postgrad Med J 98(1165):871–879. https://doi.org/10.1136/postgradmedj-2021-139939

    Article  PubMed  Google Scholar 

  48. Islam H, Chamberlain TC, Mui AL, Little JP (2021) Elevated Interleukin-10 levels in COVID-19: potentiation of pro-inflammatory responses or impaired anti-inflammatory action? Front Immunol 12:677008. https://doi.org/10.3389/fimmu.2021.677008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, Xu B, Dai Y, Li X, Zhang C, Peng Y, Feng Y, Li A, Hu Z, Xiang H, Ogg G, Ho LP, McMichael A, Jin R, Knight JC, Dong T, Zhang Y (2020) Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 5(13):e139834. https://doi.org/10.1172/jci.insight.139834

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lauw FN, Pajkrt D, Hack CE, Kurimoto M, van Deventer SJ, van der Poll T (2000) Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 165(5):2783–2789. https://doi.org/10.4049/jimmunol.165.5.2783

    Article  CAS  PubMed  Google Scholar 

  51. Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, Liu W, Zhu Y, Lin Q, Mao L, Fang M, Zhang H, Sun Z (2020) The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight 5(10):e137799. https://doi.org/10.1172/jci.insight.137799

    Article  PubMed  PubMed Central  Google Scholar 

  52. Majidpoor J, Mortezaee K (2022) Interleukin-6 in SARS-CoV-2 induced disease: interactions and therapeutic applications. Biomed Pharmacother 145:112419. https://doi.org/10.1016/j.biopha.2021.112419

    Article  CAS  PubMed  Google Scholar 

  53. Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, Grycel K, Shevchouk OT, Micallef P, Olofsson CS, Wernstedt Asterholm I, Grill HJ, Nogueiras R, Skibicka KP (2019) Parabrachial Interleukin-6 reduces Body Weight and Food Intake and increases thermogenesis to regulate Energy Metabolism. Cell Rep 26(11):3011–3026e3015. https://doi.org/10.1016/j.celrep.2019.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li YS, Ren HC, Cao JH (2022) Roles of Interleukin-6-mediated immunometabolic reprogramming in COVID-19 and other viral infection-associated diseases. Int Immunopharmacol 110:109005. https://doi.org/10.1016/j.intimp.2022.109005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rose-John S (2021) Therapeutic targeting of IL-6 trans-signaling. Cytokine 144:155577. https://doi.org/10.1016/j.cyto.2021.155577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all patients who generously participated in this study. Also, the authors acknowledge the Deputy of Research and Technology of the KUMS, Kermanshah, Iran for financial support of the current study.

Funding

This study was financially supported by the deputy of research and technology of the Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran [Grant Number: 4000648].

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding authors

Correspondence to Seyed Askar Roghani or Ramin Lotfi.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran (Ethical code: IR.KUMS.MED.REC.1400.058).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors affirm that human research participants provided informed consent for the publication of the manuscript results.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assar, S., Dastbaz, M., Amini, K. et al. Assessing the gene expression of the adenosine 5′-monophosphate-activated protein kinase (AMPK) and its relation with the IL-6 and IL-10 plasma levels in COVID-19 patients. Mol Biol Rep 50, 9925–9933 (2023). https://doi.org/10.1007/s11033-023-08835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08835-1

Keywords

Navigation