Skip to main content

Advertisement

Log in

The identification and expression of an interleukin-21 receptor in large yellow croaker (Larimichthys crocea)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

We identified a homologue of IL-21R (LcIL-21R) in large yellow croaker (Larimichthys crocea, Lc). Our investigation focused on understanding the molecular structural features and immune function of LcIL-21R.

Methods

We cloned the LcIL-21R gene from the genome of Larimichthys crocea by RT‒PCR, and the molecular and structural characteristics of LcIL-21R were analyzed by a series of protein analysis tools. We used real-time PCR to investigate the tissue distribution of LcIL-21R, and LcIL-21R gene expression regulation was also measured in head kidney leukocytes under trivalent bacterial vaccine or poly (I:C) stimulation.

Results

The open reading frame (ORF) of the LcIL-21R gene is 1629 bp long and encodes a precursor protein of 542 amino acids (aa), with a 23-aa signal peptide and a 519-aa mature peptide containing four putative N-glycosylation sites. LcIL-21R has two fibronectin type III (FNIII)-like domains (D1 and D2), a transmembrane domain, and a cytoplasmic region. A conserved WSXWS motif was also found in the D2 domain. The predicted structure of the extracellular region of LcIL-21R (LcIL-21R-Ex) is highly similar to that of human IL-21R. LcIL-21R was constitutively expressed in all tissues examined, and LcIL-21R mRNA levels were increased in the head kidney and spleen upon inactivated trivalent bacterial vaccine or poly(I:C) stimulation.

Conclusions

Our results suggest that LcIL-21R shares structural and functional properties with IL-21Rs found in other vertebrates, indicating its potential involvement in the IL-21-mediated immune response to pathogenic infections. These findings contribute to our understanding of the evolutionary conservation of IL-21 signaling and its role in the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Parrish J, Dillon R, Nelson A, Hammond A, Sprecher C (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408(6808):57–63. https://doi.org/10.1038/35040504

    Article  CAS  Google Scholar 

  2. Mao K, Chen W, Mu Y, Ao J, Chen X (2018) Identification of two IL-4/13 homologues in large yellow croaker (Larimichthys crocea) revealed their similar roles in inducing alternative activation of monocytes/macrophages. Fish Shellfish Immunol 80:180–190. https://doi.org/10.1016/j.fsi.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  3. Cindy S, Deenick EK, Batten M, Tangye SG (2012) The Origins, function, and regulation of T follicular helper cells. J Exp Med 209(7):12411251. https://doi.org/10.1084/jem.20120994

    Article  CAS  Google Scholar 

  4. Bondensgaard K, Breinholt J, Madsen D, Omkvist DH, Kang L, Worsaae A, Becker P, Schiødt PB, Hjorth SA (2007) The existence of multiple conformers of interleukin-21 directs engineering of a superpotent analogue. J Biol Chem 282(32):23326–23336. https://doi.org/10.1074/jbc.M701313200

    Article  CAS  PubMed  Google Scholar 

  5. Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey I (2004) IL-21 is produced by nkt cells and modulates nkt cell activation and cytokine production. J Immunol 178(5):2827–2834. https://doi.org/10.4049/jimmunol.178.5.2827

    Article  Google Scholar 

  6. Zeng R, Spolski R, Casas E, Zhu W, Levy DE, Leonard WJ (2007) The molecular basis of IL-21-mediated proliferation. Blood 109(10):4135–4142. https://doi.org/10.1182/blood-2006-10-054973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, Sugamura K (2001) Cutting edge: the common γ-chain is Anindispensa subunit of the IL-21 receptor complex. J Immunol 167(1):1–15. https://doi.org/10.4049/jimmunol.167.1.1

    Article  CAS  PubMed  Google Scholar 

  8. Brenne AT, Ro TB, Waage A, Sundan A, Borset M, Hansen HH (2002) Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 99(10): 3756–3762. https://doi.org/10.1182/blood.V99.10.3756

  9. Strengell M, Matikainen S, Siren J, Lehtonen A, Foster D, Julkunen I, Sareneva T (2003) IL-21 in synergy with IL-15 or IL-18 enhances. IFN-γ production in human NK and T cells. J Immunol 170(11):5464–5469. https://doi.org/10.4049/jimmunol.170.11.5464

    Article  CAS  PubMed  Google Scholar 

  10. Asano R, Kudo T, Makabe K, Tsumot K, Kumagai I (2002) Antitumor Activity of Interleukin-21 prepared by novel refolding procedure from inclusion bodies expressed in Escherichia Coli. FEBS Lett 528(1):7076. https://doi.org/10.1016/S0014-5793(02)03254-4

    Article  Google Scholar 

  11. June CH, Ledbetter JA, Lindsten T, Thompson B (1989) Evidence for the involvement of three distinct signals in the induction of il-2 gene expression in human T lymphocytes. J Immunol 143(1):153161. https://doi.org/10.4049/jimmunol.143.1.153

    Article  Google Scholar 

  12. Lee Y, Mitsdoerffer M, Xiao S, Gu G, Sobel RA, Kuchroo VK (2015) IL-21R signaling is critical for induction of spontaneous experimental autoimmune encephalomyelitis. J Clin Investig 125(11):4011–4020. https://doi.org/10.1172/JCI75933

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev T, Weber J, Marsland J, Oxenius A, Kopf M (2009) IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324(5934):1576-80. https://doi.org/10.1126/science.1172815

  14. Kotlarz D, Ziętara N, Milner JD, Klein C (2014) Human IL-21 and IL-21R deficiencies: two novel entities of primary immunodeficiency. Curr Opin Pediatr 26(6):p704–712. https://doi.org/10.1097/MOP.0000000000000160

    Article  CAS  Google Scholar 

  15. Noguchi N, Nakamura R, Hatano S, Yamada H, Sun X, Ohara N, Yoshikai Y (2018) Interleukin-21 induces short-lived effector cd8 + t cells but does not inhibit their exhaustion after Mycobacterium bovis bcg infection in mice. Infect Immun 86(8):e00147–e00118. https://doi.org/10.1128/iai.00147-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei L, Laurence A, Elias KM, Shea J (2007) IL-21 is produced by th17 cells and drives il-17 p-roduction in a stat3-dependent manner. J Biol Chem 282(48):34605–34610. https://doi.org/10.1074/jbc.M705100200

    Article  CAS  PubMed  Google Scholar 

  17. Ghalamfarsa G, MahmoudiM, Afrouzi MM, YazdaniY, Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Niaragh FJ (2016) IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. J Immunotoxicol 13(3):274–285. https://doi.org/10.3109/1547691X.2015.1089343

    Article  CAS  PubMed  Google Scholar 

  18. Zhang A, Jian X, Wang D, Ren J, Wang X, Zhou H (2020) Characterization and bioactivity of grass carp (ctenopharyngodon idella) interleukin-21: inducible production and involvement in inflammatory regulation. Fish Shellfish Immunol 99(C):19–26. https://doi.org/10.1016/j.fsi.2020.01.059

    Article  CAS  PubMed  Google Scholar 

  19. Mu P, Wang Y, Ai AJ, Chen C X (2018) Molecular cloning and bioactivity of an Il-2 homologue in large yellow croaker (Larimichthys Crocea). Fish & Shellfish Immunology l 81:309–317. https://doi.org/10.1016/j.fsi.2018.07.040

    Article  CAS  Google Scholar 

  20. Ao J, Mu Y, Xiang X, Fan D, Feng M, Zhang S, Shi Q, Zhu Y, Li T, Ding Y, Nie L, Li Q, Dong R, Jiang L, Sun B, Zhang X, Li M, Zhang Q, Xie S, Zhu Y, Jiang X, Wang X, Mu P, Chen W, Yue Z, Wang Z, Wang J, Shao J, Chen X (2015) Genome sequencing of the perciform fish larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. Plos Genet 11(4):e1005118. https://doi.org/10.1371/journal.pgen.1005118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. https://doi.org/10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  22. Kaplan MH, Glosson NL, Stritesky GL, Yeh N, Kinzfogl J, Rohrabaugh SL, Goswami R, Pham D, Levy DE, Brutkiewicz RB, Blum JS, Cooper S, Hangoc G, Broxmeyer HE (2011) STAT3-dependent IL-21production from T helper cells regulates hematopoietic progenitor cell homeostasis. Blood 117(23):6198–6201. https://doi.org/10.1182/blood-2011-02-334367

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hamming O, Kang L, Svensson A, Karlsen J, Rahbek NH, Paludan SR, Hjorth S, Bondensgaard K, Hartmann R (2012) Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R. J Biol 287(12):9454–9460. https://doi.org/10.1074/jbc.M111.311084

    Article  CAS  Google Scholar 

  24. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, Sugamura K (2001) Cutting Edge: the common γ-chain is an indispensable subunit of the il-21 receptor complex. J Immunol 167(1):15. https://doi.org/10.4049/jimmunol.167.1.1

    Article  Google Scholar 

  25. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, Mackay CR (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-th1/th2 effector cells that provide help for B cells. J Immunol 173(1):68–78. https://doi.org/10.4049/jimmunol.173.1.68

    Article  CAS  PubMed  Google Scholar 

  26. Habib T, Senadheera S, Weinberg K, Kaushansky K (2002) The common Gamma Chain (γC) is a required signaling component of the il-21 receptor and supports il-21-induced cell proliferation via jak3. Biochemistry 41(27):8725–8731. https://doi.org/10.1021/bi0202023

    Article  CAS  PubMed  Google Scholar 

  27. Jungel A, Distler JHW, Stolarska MK, Seemayer CA, Seibl R, Forster A, Michel BA, Gay RE, Emmrich F, GayS, Distler O (2004) Expression of interleukin-21 receptor, but not interleukin-21, in synovial fibroblasts and synovial macrophages of patients with rheumatoid arthritis. Arthritis Rheum 50(5):1468–1476. https://doi.org/10.1002/art.20218

    Article  CAS  PubMed  Google Scholar 

  28. Good L, Bryant VL, Tangye SG (2006) Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol 177(8):5236–5247. https://doi.org/10.4049/jimmunol.177.8.5236

    Article  CAS  PubMed  Google Scholar 

  29. Wang T, Rosales PD, Costa MM, Campbell S, Snow M, Collet B, Martin SA, Secombes SJ (2011) Functional characterization of a nonmammalian IL-21: Rainbow Trout oncorhynchus mykiss il-21 upregulates the expression of the th cell signature cytokines ifn-gamma, IL-10, and IL-22. J Immunol 186(2):708–721. https://doi.org/10.4049/jimmunol.1001203

    Article  CAS  PubMed  Google Scholar 

  30. Ruckert R, Paus SB, Brandt K (2008) Interleukin-21 stimulates antigen uptake, protease activity, survival and induction of CD4 + T cell proliferation by murine macrophages. Br Soc Immunol 151(3):487–495. https://doi.org/10.1111/j.1365-2249.2007.03581.x

    Article  CAS  Google Scholar 

  31. Mu P, Huo J, Sun M, Chen X, Ao J (2021) Identification and expression analysis of il-2 receptors in large yellow croaker (Larimichthys Crocea). Fish Shellfish Immunol 2:100008. https://doi.org/10.1016/j.fsirep.2021.100008

    Article  Google Scholar 

  32. Yuan X, Rong Y, Chen Y, Ren C, Meng Y, Mu Y, Chen X (2022) Molecular characterization, expression analysis and cellular location of Il-4/13 receptors in large yellow croaker (Larimichthys Crocea). Fish Shellfish Immunol 120:45–55. https://doi.org/10.1016/j.fsi.2021.11.007

    Article  CAS  PubMed  Google Scholar 

  33. Chao Y, Peng Z, Li X, Li S (2020) Japanese flounder paralichthys olivaceus interleukin 21 induces inflammatory response and plays a vital role in the immune defense against bacterial pathogen. Fish Shellfish Immunol 98(C):364–373. https://doi.org/10.1016/j.fsi.2020.01.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China Grant 2022YFD2401001, the China Agriculture Research System of MOF and MARA Grant CARS-47, the Institute of Oceanology of Fuzhou (2021F02), and the National Natural Science Foundation of China (Grant 42106135).

Funding

National Key Research and Development Program of China Grants, 2022YFD2401001; National Natural Science Foundation of China, 42106135; China Agriculture Research System of MOF and MARA Grant, CARS-47; Institute of Oceanology of Fuzhou, 2021F02.

Author information

Authors and Affiliations

Authors

Contributions

Hanyu Wu and Pengfei Mu and Jingjie Chen wrote the main manuscript text. Xinhua Chen reviewed the manuscript.Qiuling Fu and Yan Teng prepared Figs. 1, 2, 3, 4 and 5.

Corresponding author

Correspondence to Xinhua Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal study was reviewed and approved by Ethical Review Board of Fujian Agriculture and Forestry University (ethical approval number: PZCASFAFU22018). All animal housing and experiments were conducted in strict accordance with the instituticral wnidsines for care and use of laboratory animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Fu, Q., Teng, Y. et al. The identification and expression of an interleukin-21 receptor in large yellow croaker (Larimichthys crocea). Mol Biol Rep 50, 10121–10129 (2023). https://doi.org/10.1007/s11033-023-08827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08827-1

Keywords

Navigation