Skip to main content
Log in

PPAR-γ promotes the polarization of rat retinal microglia to M2 phenotype by regulating the expression of CD200-CD200R1 under hypoxia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Recent reports suggest that peroxisome proliferator-activated receptor-γ (PPAR-γ) could promote microglial M2 polarization to inhibit inflammation. However, the specific molecular mechanisms that trigger PPAR-γ’s anti-inflammatory ability in microglia are yet to be expounded. Thus, in this study, we aimed to explore the molecular mechanisms behind the anti-inflammatory effects of PPAR-γ in hypoxia-stimulated rat retinal microglial cells.

Methods and results

We used shRNA expressing lentivirus to knock down PPAR-γ and CD200 genes, and we assessed hypoxia-induced polarization markers release – M1 (iNOS, IL-1β, IL-6, and TNF-α) and M2 (Arg-1, YM1, IL-4, and IL-10) by RT-PCR. We also monitored PPAR-γ-related signals (PPAR-γ, PPAR-γ in cytoplasm or nucleus, CD200, and CD200Rs) by Western blot and RT-PCR. Our results showed that hypoxia enhanced PPAR-γ and CD200 expressions in microglial cells. Moreover, PPAR-γ agonist 15d-PGJ2 elevated CD200 and CD200R1 expressions, whereas sh-PPAR-γ had the opposite effect. Following hypoxia, expressions of M1 markers increased significantly, while those of M2 markers decreased, and the above effects were attenuated by 15d-PGJ2. Conversely, knocking down PPAR-γ or CD200 inhibited the polarization of microglial cells to M2 phenotype.

Conclusion

Our findings demonstrated that PPAR-γ performed an anti-inflammatory function in hypoxia-stimulated microglial cells by promoting their polarization to M2 phenotype via the CD200-CD200R1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silverman SM, Wong WT (2018) Microglia in the retina: roles in Development, Maturity, and Disease. Annu Rev Vis Sci 4:45–77. https://doi.org/10.1146/annurev-vision-091517-034425

    Article  PubMed  Google Scholar 

  2. Lynch MA (2009) The Multifaceted Profile of activated Microglia. Mol Neurobiol 40:139–156. https://doi.org/10.1007/s12035-009-8077-9

    Article  CAS  PubMed  Google Scholar 

  3. Block ML, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  4. Hernangómez M, Mestre L, Correa FG et al (2012) CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60:1437–1450. https://doi.org/10.1002/glia.22366

    Article  PubMed  Google Scholar 

  5. Dick AD, Carter D, Robertson M et al (2003) Control of myeloid activity during retinal inflammation. J Leukoc Biol 74:161–166. https://doi.org/10.1189/jlb.1102535

    Article  CAS  PubMed  Google Scholar 

  6. Jiang L, Xu F, He W et al (2016) CD200Fc reduces TLR4-mediated inflammatory responses in LPS-induced rat primary microglial cells via inhibition of the NF-κB pathway. Inflamm Res 65:521–532. https://doi.org/10.1007/s00011-016-0932-3

    Article  CAS  PubMed  Google Scholar 

  7. Mirza AZ, Althagafi II, Shamshad H (2019) Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem 166:502–513. https://doi.org/10.1016/j.ejmech.2019.01.067

    Article  CAS  PubMed  Google Scholar 

  8. Szalardy L, Zadori D, Tanczos E et al (2013) Elevated levels of PPAR-gamma in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett 554:131–134. https://doi.org/10.1016/j.neulet.2013.08.069

    Article  CAS  PubMed  Google Scholar 

  9. Benedusi V, Martorana F, Brambilla L et al (2012) The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis. J Biol Chem 287:35899–35911. https://doi.org/10.1074/jbc.M112.366419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Korbecki J, Bobiński R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 68:443–458. https://doi.org/10.1007/s00011-019-01231-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bouhlel MA, Derudas B, Rigamonti E et al (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143. https://doi.org/10.1016/j.cmet.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  12. Roque RS, Caldwell RB (1993) Isolation and culture of retinal microglia. Curr Eye Res 12:285–290. https://doi.org/10.3109/02713689308999475

    Article  CAS  PubMed  Google Scholar 

  13. Dong N, Li X, Xiao L et al (2012) Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro. Invest Ophthalmol Vis Sci 53:7567–7575. https://doi.org/10.1167/iovs.12-9446

    Article  CAS  PubMed  Google Scholar 

  14. Wright GJ, Cherwinski H, Foster-Cuevas M et al (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171:3034–3046. https://doi.org/10.4049/jimmunol.171.6.3034

    Article  CAS  PubMed  Google Scholar 

  15. Habib P, Dreymueller D, Ludwig A et al (2013) Sex steroid hormone-mediated functional regulation of microglia-like BV-2 cells during hypoxia. J Steroid Biochem Mol Biol 138:195–205. https://doi.org/10.1016/j.jsbmb.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  16. Kimble EA, Svoboda RA, Ostroy SE (1980) Oxygen consumption and ATP changes of the vertebrate photoreceptor. Exp Eye Res 31:271–288. https://doi.org/10.1016/s0014-4835(80)80037-6

    Article  CAS  PubMed  Google Scholar 

  17. Grimm C, Willmann G (2012) Hypoxia in the eye: a two-sided coin. High Alt Med Biol 13:169–175. https://doi.org/10.1089/ham.2012.1031

    Article  PubMed  Google Scholar 

  18. Dick AD, Broderick C, Forrester JV, Wright GJ (2001) Distribution of OX2 antigen and OX2 receptor within retina. Invest Ophthalmol Vis Sci 42:170–176

    CAS  PubMed  Google Scholar 

  19. Broderick C, Hoek RM, Forrester JV et al (2002) Constitutive retinal CD200 expression regulates Resident Microglia and Activation State of Inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 161:1669–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor S, Calder CJ, Albon J et al (2011) Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp Eye Res 92:338–343. https://doi.org/10.1016/j.exer.2011.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou D, Ji L, Chen Y (2020) TSPO modulates IL-4-Induced Microglia/Macrophage M2 polarization via PPAR-γ pathway. J Mol Neurosci 70:542–549. https://doi.org/10.1007/s12031-019-01454-1

    Article  CAS  PubMed  Google Scholar 

  22. Habib P, Slowik A, Zendedel A et al (2014) Regulation of hypoxia-induced inflammatory responses and M1-M2 phenotype switch of primary rat microglia by sex steroids. J Mol Neurosci 52:277–285. https://doi.org/10.1007/s12031-013-0137-y

    Article  CAS  PubMed  Google Scholar 

  23. Pilipović K, Župan Ž, Dolenec P et al (2015) A single dose of PPARγ agonist pioglitazone reduces cortical oxidative damage and microglial reaction following lateral fluid percussion brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 59:8–20. https://doi.org/10.1016/j.pnpbp.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  24. Ramanan S, Kooshki M, Zhao W et al (2009) The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys 75:870–877. https://doi.org/10.1016/j.ijrobp.2009.06.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Q, Wu X, Yan S et al (2016) The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes. J Neuroinflammation 13:259. https://doi.org/10.1186/s12974-016-0728-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 68:159–167. https://doi.org/10.1097/NEN.0b013e3181964113

    Article  CAS  PubMed  Google Scholar 

  27. Hatherley D, Barclay AN (2004) The CD200 and CD200 receptor cell surface proteins interact through their N-terminal immunoglobulin-like domains. Eur J Immunol 34:1688–1694. https://doi.org/10.1002/eji.200425080

    Article  CAS  PubMed  Google Scholar 

  28. Koning N, van Eijk M, Pouwels W et al (2010) Expression of the inhibitory CD200 receptor is Associated with Alternative Macrophage activation. J Innate Immun 2:195–200. https://doi.org/10.1159/000252803

    Article  CAS  PubMed  Google Scholar 

  29. Yi M-H, Zhang E, Kang JW et al (2012) Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Res 1481:90–96. https://doi.org/10.1016/j.brainres.2012.08.053

    Article  CAS  PubMed  Google Scholar 

  30. Dentesano G, Serratosa J, Tusell JM et al (2014) CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells: PPAR-γ modulation of CD200R1-CD200 expression. Glia 62:982–998. https://doi.org/10.1002/glia.22656

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2018GXNSFAA281128), the National Natural Science Foundation of China (No. 82060179, No. 82070982) and Guangxi Clinical Ophthalmic Research Center (No. AD19245193).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yiyi Hong and Li Jiang. The first draft of the manuscript was written by Yiyi Hong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chen Changzheng or Chen Lifei.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Jiang, L., Tang, F. et al. PPAR-γ promotes the polarization of rat retinal microglia to M2 phenotype by regulating the expression of CD200-CD200R1 under hypoxia. Mol Biol Rep 50, 10277–10285 (2023). https://doi.org/10.1007/s11033-023-08815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08815-5

Keywords

Navigation