Skip to main content

Advertisement

Log in

In vitro naive CD4+ T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Gene regulation by microRNA (miRNA) is central in T lymphocytes differentiation processes. Here, we investigate miRNA-29b (miR-29b) roles in the reprogramming of T cell differentiation, which can be a promising therapeutic avenue for various types of inflammatory disorders such as rheumatoid arthritis and multiple sclerosis.

Methods and results

Adipose Mesenchymal Stem Cell-derived exosomes (AMSC-Exo) enriched with miR-29b were delivered into naive CD4+ T (nCD4+) cells. The expression level of important transcription factors including RAR-related orphan receptor gamma (RORγt), GATA3 binding protein (GATA3), T-box transcription factor 21, and Forkhead box P3 was determined by quantitative Real-Time PCR. Moreover, flow cytometry and Enzyme-linked Immunosorbent Assay were respectively used to measure the frequency of T regulatory cells and the levels of cytokines production (Interleukin 17, Interleukin 4, Interferon-gamma, and transforming growth factor beta. This study indicates that the transfection of miR-29b mimics into T lymphocytes through AMSC-Exo can alter the CD4+ T cells’ differentiation into other types of T cells.

Conclusions

In conclusion, AMSC-Exo-based delivery of miR-29b can be considered as a new fascinating avenue for T cell differentiation inhibition and the future treatment of several inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors, [Hossein Ghanbarian and Seyed Mahmoud Hashemi], upon reasonable request at [hghanbarian@sbmu.ac.ir, Ghanbarian.hossein@gmail.com and smmhashemi@sbmu.ac.ir].

References

  1. Hepworth MR, Monticelli LA, Fung TC, Ziegler CGK, Grunberg S, Sinha R et al (2013) Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498(7452):113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou L, Chong MMW, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30(5):646–655

    Article  CAS  PubMed  Google Scholar 

  3. Rudd BD (2020) Neonatal T, cells: a reinterpretation. Annu Rev Immunol 38:229–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969):1098–1102

    Article  PubMed  PubMed Central  Google Scholar 

  5. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  6. Groom JR (2019) Regulators of T-cell fate: integration of cell migration, differentiation and function. Immunol Rev 289(1):101–114

    Article  CAS  PubMed  Google Scholar 

  7. Coomes SM, Pelly VS, Wilson MS (2013) Plasticity within the alphabeta(+)CD4(+) T-cell lineage: when, how and what for? Open Biol 3(1):120157

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16(5):279–294

    Article  CAS  PubMed  Google Scholar 

  9. Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CDC et al (2011) MicroRNA-29 regulates T-Box transcription factors and Interferon-g; production in helper T cells. Immunity 35(2):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M et al (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 12(9):861–869

    Article  CAS  PubMed  Google Scholar 

  11. Fu Y, Chen J, Huang Z (2019) Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA 1(1):24

    Article  Google Scholar 

  12. Dasgupta I, Chatterjee A (2021) Recent advances in miRNA Delivery Systems. Methods Protoc 4(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tarhriz V, Eyvazi S, Musavi M, Abasi M, Sharifi K, Ghanbarian H et al (2019) Transient induction of Cdk9 in the early stage of differentiation is critical for myogenesis. J Cell Biochem 120(11):18854–18861

    Article  CAS  PubMed  Google Scholar 

  14. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  15. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21 4:575–581

    Article  Google Scholar 

  16. Ji C, Guo X (2019) The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol 15(12):731–743

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  18. Bolandi Z, Hosseini Rad SMA, Soudi S, Hashemi SM, Ghanbarian H (2018) A simple and highly efficient method for transduction of human adipose-derived mesenchymal stem cells. J Cell Biochem. https://doi.org/10.1002/jcb.27453

    Article  PubMed  Google Scholar 

  19. Bolandi Z, Mokhberian N, Eftekhary M, Sharifi K, Soudi S, Hashemi SM et al (2020) Adipose derived mesenchymal stem cell exosomes loaded with miR-10a promote the differentiation of Th17 and Treg from naive CD4+ T cell. Life Sci. https://doi.org/10.1016/j.lfs.2020.118218

    Article  PubMed  Google Scholar 

  20. Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G et al (2012) miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. J Immunol 189(4):1567–1576

    Article  CAS  PubMed  Google Scholar 

  21. Kwon JJ, Factora TD, Dey S, Kota J (2018) A systematic review of miR-29 in cancer. Mol Ther Oncolytics 12:173–194

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu H, Cheung IY, Guo HF, Cheung NKV (2009) MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res 69(15):6275–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (2003) Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21(1):713–758

    Article  CAS  PubMed  Google Scholar 

  24. Chen W, Huang Y, Han J, Yu L, Li Y, Lu Z et al (2016) Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res 64(4):831–840

    Article  CAS  PubMed  Google Scholar 

  25. Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V et al (2022) Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 20(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012:925135

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gorelik L, Constant S, Flavell RA (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 195(11):1499–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chauhan SK, Saban DR, Lee HK, Dana R (2009) Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol 182(1):148–153

    Article  CAS  PubMed  Google Scholar 

  29. Xuan J, Guo S, lin, Huang A, Xu H, bing, Shao M, Yang Y et al (2017) MiR-29a and miR-652 attenuate liver fibrosis by inhibiting the differentiation of CD4+ T cells. Cell Struct Funct 42(2):95–103

    Article  PubMed  Google Scholar 

  30. Brain O, Owens BMJ, Pichulik T, Allan P, Khatamzas E, Leslie A et al (2013) The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39(3):521–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Iranian Stem Cell Council and Shahid Beheshti University of Medical Sciences for their valuable support.

Funding

This study was supported by the Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant No. 18593).

Author information

Authors and Affiliations

Authors

Contributions

ZB: Investigation, Formal analysis, Methodology, Data curation, Writing—original draft, Writing—review & editing, SMH: Supervision, Project administration, Conceptualization, Writing—review & editing, MA: Investigation, Writing—original draft, SA: Investigation, Writing—original draft, NM: Writing—review & editing, MM: Investigation, HG: Conceptualization, Funding acquisition, Visualization, Project administration, Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Seyed Mahmoud Hashemi or Hossein Ghanbarian.

Ethics declarations

Competing interest

The authors have no financial interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolandi, Z., Hashemi, S.M., Abasi, M. et al. In vitro naive CD4+ T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells. Mol Biol Rep 50, 9037–9046 (2023). https://doi.org/10.1007/s11033-023-08767-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08767-w

Keywords

Navigation