Skip to main content

Advertisement

Log in

Characterization of vaginal Lactobacillus species as a predictor of fertility among Iranian women with unexplained recurrent miscarriage and fertile women without miscarriage history using machine learning modeling

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2023

This article has been updated

Abstract

Background

Lactobacillus spp. are the predominant bacteria of the vaginal tract, the alteration of which has been previously linked to miscarriage. Here, we investigated differences between selected vaginal Lactobacillus species of women with a history of recurrent miscarriages and fertile women without a history of miscarriage in Iran.

Methods and results

Vaginal swabs were taken from 29 fertile and 24 infertile women and quantitative real-time PCR (qPCR) assay was used to determine a selection of vaginal Lactobacillus species in both groups. The logistic regression (LR) model, Naive Bayes (NB) model, support vector machine model (SVM), and neural network model (NN) were developed to predict disease outcome by selected variables. LR analysis was used to construct a nomogram indicating predictions of the risk of miscarriage. The most abundant species among the patients were L. rhamnosus, L. ruminis, and L. acidophilus, while L. gasseri, L. vaginalis, L. fermentum, and L. iners were more abundant in healthy subjects. The distribution of L. ruminis, L. iners, and L. rhamnosus was higher in patients, while L. acidophilus, L. gasseri, and L. fermentum were highly distributed among healthy subjects. Higher AUC in predicting the disease outcome was observed for L. gasseri, L. rhamnosus, L. fermentum, and L. plantarum.

Conclusion

Our findings provide experimental evidence of vaginal Lactobacillus imbalance in infertile women and a suitable predictor for miscarriage based on the AUC algorithms. Further studies with larger sample size and using high-throughput technologies are needed to boost our understanding of the role of lactobacilli in miscarriage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  1. Maddirevula S, Awartani K, Coskun S, AlNaim LF, Ibrahim N, Abdulwahab F et al (2020) A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet 139(5):605–613. https://doi.org/10.1007/s00439-020-02143-5

    Article  CAS  PubMed  Google Scholar 

  2. Zhang F, Zhang T, Ma Y, Huang Z, He Y, Pan H et al (2019) Alteration of vaginal microbiota in patients with unexplained recurrent miscarriage. Exp Ther Med 17(5):3307–3316. https://doi.org/10.3892/etm.2019.7337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grewal K, Lee YS, Smith A, Brosens JJ, Bourne T, Al-Memar M et al (2022) Chromosomally normal miscarriage is associated with vaginal dysbiosis and local inflammation. BMC Med 20(1):38. https://doi.org/10.1186/s12916-021-02227-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verstraelen H, Senok AC (2005) Vaginal lactobacilli, probiotics, and IVF. Reprod Biomed Online 11(6):674–675. https://doi.org/10.1016/s1472-6483(10)61683-5

    Article  PubMed  Google Scholar 

  5. Salliss ME, Farland LV, Mahnert ND, Herbst-Kralovetz MM (2021) The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum Reprod Update 28(1):92–131. https://doi.org/10.1093/humupd/dmab035

    Article  CAS  PubMed  Google Scholar 

  6. Rossi F, Amadoro C, Colavita G (2019) Members of the lactobacillus genus complex (lgc) as opportunistic pathogens: a review. Microorganisms 7(5):126. https://doi.org/10.3390/microorganisms7050126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moreno I, Codon ̃er FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almaz ́an J, Alonso R, Alama ́ P, Remohí J, Pellicer A, Ramon D, Simon C (2016) Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 215(6):684–703. https://doi.org/10.1016/j.ajog.2016.09.075

    Article  PubMed  Google Scholar 

  8. Dube R, Kar SS (2022) Genital microbiota and outcome of assisted reproductive treatment-a systematic review. Life 12(11):1867. https://doi.org/10.3390/life12111867

    Article  PubMed  PubMed Central  Google Scholar 

  9. Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S (2015) Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 6:81. https://doi.org/10.3389/fphys.2015.00081

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sirota I, Zarek SM, Segars JH (eds) (2014) Potential influence of the microbiome on infertility and assisted reproductive technology. Semin Reprod Med 32(1):35–42. doi: https://doi.org/10.1055/s-0033-1361821

  11. Motevaseli E, Shirzad M, Raoofian R, Hasheminasab S-M, Hatami M, Dianatpour M et al (2013) Differences in vaginal lactobacilli composition of iranian healthy and bacterial vaginosis infected women: a comparative analysis of their cytotoxic effects with commercial vaginal probiotics. Iran Red Crescent Med J 15(3):199–206. https://doi.org/10.5812/ircmj.3533

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma B, Forney LJ, Ravel J (2012) Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 66:371–389. https://doi.org/10.1146/annurev-micro-092611-150157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. France MT, Mendes-Soares H, Forney LJ (2016) Genomic comparisons of Lactobacillus crispatus and Lactobacillus iners reveal potential ecological drivers of community composition in the vagina. Appl Environ Microbiol 82(24):7063–7073. https://doi.org/10.1128/AEM.02385-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srinivasan U, Misra D, Marazita ML, Foxman B (2009) Vaginal and oral microbes, host genotype and preterm birth. Med Hypotheses 73(6):963–975. https://doi.org/10.1016/j.mehy.2009.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  15. Petricevic L, Domig KJ, Nierscher FJ, Sandhofer MJ, Fidesser M, Krondorfer I et al (2014) Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci Rep 4(1):1–6. https://doi.org/10.1038/srep05136

    Article  CAS  Google Scholar 

  16. Ostadmohammadi S, Azimirad M, Houri H, Naseri K, Javanmard E, Mirjalali H et al (2021) Characterization of the gut microbiota in patients with primary sclerosing cholangitis compared to inflammatory bowel disease and healthy controls. Mol Biol Rep 48(7):5519–5529. https://doi.org/10.1007/s11033-021-06567-8

    Article  CAS  PubMed  Google Scholar 

  17. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14:1–37. https://doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

  18. Komarek P (2004) Logistic regression for data mining and high-dimensional classification. Dissertation, Carnegie Mellon University

    Google Scholar 

  19. Gaur P (2012) Neural networks in data mining. IJECSE

  20. Hosmer DWJr, Lemeshow S, Sturdivant RX (2013) Applied Logistic Regression, Third Edition. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  21. Zhou X-H, McClish DK, Obuchowski NA (2011) Statistical methods in diagnostic medicine, Second Edition. John Wiley & Sons, New Jersey

  22. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  23. Iasonos A, Schrag D, Raj GV, Panageas KS (2008) How to build and interpret a nomogram for cancer prognosis. J Clin Oncol 26(8):1364–1370. https://doi.org/10.1200/JCO.2007.12.9791

    Article  PubMed  Google Scholar 

  24. Xiao M, Zheng Y, Wang M-X, Sun Y-H, Chen J, Zhu K-Y et al (2022) Elevated histone demethylase KDM5C increases recurrent miscarriage risk by preventing trophoblast proliferation and invasion. Cell Death Discov 8(1):495. https://doi.org/10.1038/s41420-022-01284-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plaçais L, Kolanska K, Kraiem YB, Cohen J, Suner L, Bornes M et al (2020) Intralipid therapy for unexplained recurrent miscarriage and implantation failure: case-series and literature review. Eur J Obstet Gynecol Reprod Biol 252:100–104. https://doi.org/10.1016/j.ejogrb.2020.06.017

    Article  PubMed  Google Scholar 

  26. Venneri M, Franceschini E, Sciarra F, Rosato E, D’Ettorre G, Lenzi A (2022) Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest 45(6):1151–1160. https://doi.org/10.1007/s40618-022-01752-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. López-Moreno A, Aguilera M (2021) Vaginal probiotics for reproductive health and related dysbiosis: systematic review and meta-analysis. J Clin Med 10(7):1461. https://doi.org/10.3390/jcm10071461

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li M, Zhao C, Zhao Y, Li J, Wei L (2022) Age-Stratified analysis of vaginal microbiota dysbiosis and the relationship with HPV viral load in HPV-Positive women. J Immunol Res 2022:1372926. https://doi.org/10.1155/2022/1372926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi Y, Tanimura K, Sasagawa Y, Yamada H (2020) Vaginal microbiota associated with preterm delivery. J Infect Chemother 26(11):1134–1138. https://doi.org/10.1016/j.jiac.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  30. Yoo JY, Rho M, You Y-A, Kwon EJ, Kim M-H, Kym S et al (2016) 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women. Exp Mol Med 48(2):e208. https://doi.org/10.1038/emm.2015.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang L, He L, Chen J, Wei S, Xu H, Luo M (2022) HPV and vaginal microecological disorders in infertile women: a cross-sectional study in the chinese population. Virol J 19(1):137. https://doi.org/10.1186/s12985-022-01869-0

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koedooder R, Singer M, Schoenmakers S, Savelkoul PH, Morré SA, de Jonge JD et al (2019) The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Hum Reprod 34(6):1042–1054. https://doi.org/10.1093/humrep/dez065

    Article  CAS  PubMed  Google Scholar 

  33. Azpiroz MA, Orguilia L, Palacio MI, Malpartida A, Mayol S, Mor G et al (2021) Potential biomarkers of infertility associated with microbiome imbalances. Am J Reprod Immunol 86(4):e13438. https://doi.org/10.1111/aji.13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang F, Dai J, Chen T (2021) Role of Lactobacillus in female infertility via modulating sperm agglutination and immobilization. Front Cell Infect Microbiol 10:620529. https://doi.org/10.3389/fcimb.2020.620529

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abdelmaksoud AA, Koparde VN, Sheth NU, Serrano MG, Glascock AL, Fettweis JM et al (2016) Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria. Microbiology 162(Pt 3):466–475. https://doi.org/10.1099/mic.0.000238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Younis N, Mahasneh A (2020) Probiotics and the envisaged role in treating human infertility. Middle East Fertil Soc J 25(1):1–9. https://doi.org/10.1186/s43043-020-00039-y

    Article  Google Scholar 

  37. Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 8:1162. https://doi.org/10.3389/fmicb.2017.01162

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moosa Y, Kwon D, De Oliveira T, Wong EB (2020) Determinants of vaginal microbiota composition. Front Cell Infect Microbiol 10:467. https://doi.org/10.3389/fcimb.2020.00467

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song SD, Acharya KD, Zhu JE, Deveney CM, Walther-Antonio MR, Tetel MJ et al (2020) Daily vaginal microbiota fluctuations associated with natural hormonal cycle, contraceptives, diet, and exercise. mSphere 5(4):e00593–e00520. https://doi.org/10.1128/mSphere.00593-20

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chaban B, Links MG, Jayaprakash TP, Wagner EC, Bourque DK, Lohn Z et al (2014) Characterization of the vaginal microbiota of healthy canadian women through the menstrual cycle. Microbiome 2(1):1–12. https://doi.org/10.1186/2049-2618-2-23

    Article  Google Scholar 

  41. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X et al (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4(132):132ra52–ra52. https://doi.org/10.1126/scitranslmed.3003605

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van De Wijgert JH, Borgdorff H, Verhelst R, Crucitti T, Francis S, Verstraelen H et al (2014) The vaginal microbiota: what have we learned after a decade of molecular characterization? PLoS ONE 9(8):e105998. https://doi.org/10.1371/journal.pone.0105998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schellenberg JJ, Dumonceaux TJ, Hill JE, Kimani J, Jaoko W, Wachihi C et al (2012) Selection, phenotyping and identification of acid and hydrogen peroxide producing bacteria from vaginal samples of canadian and east african women. PLoS ONE 7(7):e41217. https://doi.org/10.1371/journal.pone.0041217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernández L, Castro I, Arroyo R, Alba C, Beltrán D, Rodríguez JM (2023) Immunomodulation of the vaginal ecosystem by Ligilactobacillus salivarius CECT 30632 improves pregnancy rates among women with infertility of unknown origin or habitual abortions. Nutrients 15(2):362. https://doi.org/10.3390/nu15020362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh K, Fong Y, Prasad R, Dong F (1999) Does an acidic medium enhance the efficacy of vaginal misoprostol for pre-abortion cervical priming? Hum Reprod 14(6):1635–1637. https://doi.org/10.1093/humrep/14.6.1635

    Article  CAS  PubMed  Google Scholar 

  46. Liu L, Jiao Y, Li X, Ouyang Y, Shi D (2020) Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput Methods Programs Biomed 196:105624. https://doi.org/10.1016/j.cmpb.2020.105624

    Article  PubMed  Google Scholar 

  47. Hossain M, Habib M, Saleheen AAS, Kamruzzaman M, Rahman A, Roy S et al (2022) Performance evaluation of machine learning algorithm for classification of unintended pregnancy among married women in bangladesh. J Healthc Eng 2022:1460908. https://doi.org/10.1155/2022/1460908

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park S, Moon J, Kang N, Kim Y, You Y-A, Kwon E et al (2022) Predicting preterm birth through vaginal microbiota, cervical length and WBC using a machine learning model. Front Microbiol 13:912853. https://doi.org/10.3389/fmicb.2022.912853

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ling CX, Huang J, Zhang H (eds) (2003) AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. Berlin, Heidelberg. Conference of the Canadian Society for Computational Studies of Intelligence 329–342 p. doi: https://doi.org/10.1007/3-540-44886-1_25

  50. Campisciano G, Florian F, D’Eustacchio A, Stanković D, Ricci G, De Seta F et al (2017) Subclinical alteration of the cervical–vaginal microbiome in women with idiopathic infertility. J Cell Physiol 232(7):1681–1688. https://doi.org/10.1002/jcp.25806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all members of the Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

This study was supported financially by a grant [Project No. 30133] from Institutional Review Committee for Human Subjects Research at Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

FP, designed the study, and contributed to conceptualization and project administration, reviewed the literature and wrote the manuscript draft. SA, contributed to samples collection, transportation to the laboratory and DNA extraction. MA, participated in qPCR assays, data analysis, and writing the manuscript. MAL, performed the statistical analysis and contributed to drafting the manuscript. AEM contributed to drafting the manuscript and editing. AAD, contributed to methodology. HS, contributed to samples collection. MM and IZ, participated in the DNA extraction. ZF, performed the primer design. AY, supervised the project, contributed to data analysis, and critically revised the manuscript. TSH, contributed to the patient’s selection and sampling, and provided clinical consultations.

Corresponding authors

Correspondence to Abbas Yadegar or Tayebeh S. Hosseinpour.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial, non-financial, or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

The study was approved by the Institutional Ethics Review Committee of the Research Institute for Gastroenterology and Liver Diseases at Shahid Beheshti University of Medical Sciences (Project no. IR.SBMU.RIGLD.REC.1399.011), Tehran, Iran.

Informed consent

Informed consent was obtained from all individual participants included in the study before sample collection.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation section has been updated.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouresmaeili, F., Alidoost, S., Azimirad, M. et al. Characterization of vaginal Lactobacillus species as a predictor of fertility among Iranian women with unexplained recurrent miscarriage and fertile women without miscarriage history using machine learning modeling. Mol Biol Rep 50, 8785–8797 (2023). https://doi.org/10.1007/s11033-023-08745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08745-2

Keywords

Navigation