Skip to main content


Log in

Biomarkers of liver diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript


The liver is one of the pivotal organs in the human body and is fundamentally responsible for detoxification and metabolism. Various disorders such as non-alcoholic fatty liver disease, fibrosis, cirrhosis, hepatocellular carcinoma, and hepatitis are associated with improper functions of the liver. Hence, biomarkers are needed to determine the severity. Further, many liver enzymes, including the cascade of aspartate aminotransferase (AST)/serum glutamic oxaloacetic transaminase (SGOT), alanine aminotransferase (ALT)/serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), and total bilirubin (TBIL), are conventional liver biomarkers. They are not, however, unique to the liver; hence, efforts are being made to identify the precise biomarkers for liver illness that can target liver diseases. HMGB1, cytokeratin 18 (K18), glutathione-S-transferase-α (GST-α), glutamate dehydrogenase (GLDH), malate dehydrogenase (MDH), and microRNAs (miRNA) are a few examples of developing biomarkers used to detect many liver diseases. Hence, the review has highlighted various novel biomarkers of the liver so that various pathophysiological pathways and treatments can be made easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data and material availability

No data to be shared.


CCl4 :

Carbon tetrachloride


Glutamate dehydrogenase


Aspartate aminotransferase




Alanine aminotransferase


Malate dehydrogenase


Alkaline phosphate


Glutathione-S-transferase α


Gamma glutamyl trans peptidase


Micro RNA


Total bilirubin




Drug induced liver injury


Hepatic stellate cells


High mobility group box-1


Hepatocellular carcinoma


Toll like receptors


Purine nucleoside phosphorylase


Receptor for advanced glycation end products


Des-gamma carboxy prothrombin


Damage associated molecular patterns






Hepatitis B virus


Keratin 18


Hepatitis C virus


Caspases-cleaved keratin 18


Non alcoholic fatty liver disease


  1. Ozougwu JC (2017) Physiology of the liver. Int J Res Pharm Biosci 4(8):13–24

    Google Scholar 

  2. Ozougwa JC, Eyo JE (2014) Hepatoprotective effects of Allium cepa (onion) extracts against paracetamol-induced liver damage in rats. Afr J Biotechnol 13(26): 2679–2688

  3. Moore KL, Dalley AF, Agur AM (2013) Clinically oriented anatomy. Lippincott Williams & Wilkins

  4. Guyton AC, Hall JE (1986) Textbook of medical physiology. Saunders, Philadelphia

    Google Scholar 

  5. Yang X, Schnackenberg LK, Shi Q, Salminen WF (2014) Hepatic toxicity biomarkers. In: Biomarkers in toxicology, pp 241–259. Academic Press

  6. Klaassen C (2007) Casarett and Doull’s toxicology: the basic science of poisons. McGraw Hill Professional, New York

    Google Scholar 

  7. Shakya AK (2020) Drug-induced hepatotoxicity and hepatoprotective medicinal plants: a review. Indian J Pharm Educ Res 54(2):234–250

    Article  CAS  Google Scholar 

  8. Maqbool M, Rasool S, Dar MA, Bashir R, Khan M (2019) Hepatotoxicity and hepatoprotective agents: a mini review. PharmaTutor 7(9):34–40

    CAS  Google Scholar 

  9. Czaja MJ (2004) Forms, of hepatotoxin-induced liver injury. Encycl Gastroenterol 2:365

    Article  Google Scholar 

  10. Gulati K, Reshi MR, Rai N, Ray A (2018) Hepatotoxicity: its mechanisms, experimental evaluation and protective strategies. Am J Pharmacol 1(1): 1004

  11. Lynch T, Neff AP (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76(3):391–396

    PubMed  Google Scholar 

  12. Sivakrishnan S (2019) Liver disease overview. World J Pharm Pharmaceut Sci 8(1):1385–1395

    CAS  Google Scholar 

  13. Paniagua AC, Amariles P (2017) Hepatotoxicity by drugs. In: Pharmacokinetics and adverse effects of drugs-mechanisms and risks factors. InTech

  14. Ramachandran R, Kakar S (2009) Histological patterns in drug-induced liver disease. J Clin Pathol 62(6):481–492

    Article  CAS  PubMed  Google Scholar 

  15. Kleiner DE, Chalasani NP, Lee WM, Fontana RJ, Bonkovsky HL, Watkins PB, Hayashi PH, Davern TJ, Navarro V, Reddy R, Talwalkar JA (2014) Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations. Hepatology 59(2):661–670

    Article  PubMed  Google Scholar 

  16. Zhang X, Ouyang J, Thung SN (2013) Histopathologic manifestations of drug-induced hepatotoxicity. Clin Liver Dis 17(4):547–564

    Article  PubMed  Google Scholar 

  17. Hayashi PH, Fontana RJ (2014) Clinical features, diagnosis, and natural history of drug-induced liver injury. In: Seminars in liver disease, vol 34, no 02, pp 134–144. Thieme Medical Publishers

  18. Yang X, Salminen WF, Schnackenberg LK (2012) Current and emerging biomarkers of hepatotoxicity. Curr Biomarker Find 2:43

    CAS  Google Scholar 

  19. Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T (2020) Molecular biomarkers in drug-induced liver injury: challenges and future perspectives. Front Pharmacol 30(10):1667

    Article  Google Scholar 

  20. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172(3):367–379

    Article  PubMed  PubMed Central  Google Scholar 

  21. Padda MS, Sanchez M, Akhtar AJ, Boyer JL (2011) Drug-induced cholestasis. Hepatology 53(4):1377–1387

    Article  CAS  PubMed  Google Scholar 

  22. Meunier L, Larrey D (2019) Drug-induced liver injury: biomarkers, requirements, candidates, and validation. Front Pharmacol 11(10):1482

    Article  Google Scholar 

  23. Anadón A, Castellano V, Martínez-Larrañaga MR (2014) Biomarkers of drug toxicity. In: Biomarkers in toxicology, pp 593–607. Academic Press

  24. Ni YA, Chen H, Nie H, Zheng B, Gong Q (2021) HMGB1: an overview of its roles in the pathogenesis of liver disease. J Leukoc Biol 110(5):987–998

    Article  CAS  Google Scholar 

  25. Chen R, Hou W, Zhang Q, Kang R, Fan XG, Tang D (2013) Emerging role of high-mobility group box 1 (HMGB1) in liver diseases. Mol Med 19(1):357–366

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khambu B, Yan S, Huda N, Yin XM (2019) Role of high-mobility group box-1 in liver pathogenesis. Int J Mol Sci 20(21):5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Church RJ, Watkins PB (2017) The transformation in biomarker detection and management of drug-induced liver injury. Liver Int 37(11):1582–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li L, Chen L, Hu L, Liu Y, Sun HY, Tang J, Hou YJ, Chang YX, Tu QQ, Feng GS, Shen F (2011) Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology 54(5):1620–1630

    Article  CAS  PubMed  Google Scholar 

  29. Yates KP, Deppe R, Comerford M, Masuoka H, Cummings OW, Tonascia J, Chalasani N, Vuppalanchi R, NASH CRN (2017) Serum high mobility group box 1 protein levels are not associated with either histological severity or treatment response in children and adults with nonalcoholic fatty liver disease. PloS ONE 12(11): e0185813

  30. Wenfeng Z, Wu Y, Di M, Gong J, Chuanxin W, Chun H (2015) Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease. Ann Hepatol 13(5):489–495

    Article  Google Scholar 

  31. Ge X, Arriazu E, Magdaleno F, Antoine DJ, dela Cruz R, Theise N, Nieto N (2018) High mobility group box‐1 drives fibrosis progression signaling via the receptor for advanced glycation end products in mice. Hepatology 68(6): 2380–2404

  32. Wang FP, Li L, Li J, Wang JY, Wang LY, Jiang W (2013) High mobility group box-1 promotes the proliferation and migration of hepatic stellate cells via TLR4-dependent signal pathways of PI3K/Akt and JNK. PLoS ONE 8(5):e64373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kao YH, Jawan B, Goto S, Hung CT, Lin YC, Nakano T, Hsu LW, Lai CY, Tai MH, Chen CL (2008) High-mobility group box 1 protein activates hepatic stellate cells in vitro. In: Transplantation proceedings, vol 40, no 8, pp 2704–2705. Elsevier

  34. Zhang Z, Lin C, Peng L, Ouyang Y, Cao Y, Wang J, Friedman SL, Guo J (2012) High mobility group box 1 activates toll like receptor 4 signaling in hepatic stellate cells. Life Sci 91(5–6):207–212

    Article  CAS  PubMed  Google Scholar 

  35. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, Monga SP, Geller DA, Lotze MT, Tsung A (2012) High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55(6):1863–1875

    Article  CAS  PubMed  Google Scholar 

  36. Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, Zhang T, Cao Y, Pan H, Zhang L, Wang G (2018) Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J Immunother Cancer 6(1):1–5

    Article  CAS  Google Scholar 

  37. Lv G, Wu M, Wang M, Jiang X, Du J, Zhang K, Li D, Ma N, Peng Y, Wang L, Zhou L (2017) miR-320a regulates high mobility group box 1 expression and inhibits invasion and metastasis in hepatocellular carcinoma. Liver Int 37(9):1354–1364

    Article  CAS  PubMed  Google Scholar 

  38. Li H, Huang W, Luo R (2015) Retracted article: the microrna-325 inhibits hepatocellular carcinoma progression by targeting high mobility group box 1. Diagn Pathol 10(1):1–1

    Article  Google Scholar 

  39. Zhang Y, Yao YM, Huang LF, Dong N, Yu Y, Sheng ZY (2011) The potential effect and mechanism of high-mobility group box 1 protein on regulatory T cell-mediated immunosuppression. J Interferon Cytokine Res 31(2):249–257

    Article  CAS  PubMed  Google Scholar 

  40. Ding JW, Zheng XX, Zhou T, Tong XH, Luo CY, Wang XA (2016) HMGB1 modulates the Treg/Th17 ratio in atherosclerotic patients. J Atheroscler Thromb 23(6):737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi Y, Sandoghchian Shotorbani S, Su Z et al (2012) Enhanced HMGB1 expression may contribute to Th17 cells activation in rheumatoid arthritis. Clin Dev Immunol 2012:295081

    Article  PubMed  Google Scholar 

  42. Sitia G, Iannacone M, Müller S, Bianchi ME, Guidotti LG (2007) Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J Leukoc Biol 81(1):100–107

    Article  CAS  PubMed  Google Scholar 

  43. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, Billiar TR (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201(7):1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nace GW, Huang H, Klune JR, Eid RE, Rosborough BR, Korff S, Li S, Shapiro RA, Stolz DB, Sodhi CP, Hackam DJ (2013) Cellular-specific role of toll-like receptor 4 in hepatic ischemia-reperfusion injury in mice. Hepatology 58(1):374–387

    Article  CAS  PubMed  Google Scholar 

  45. Cai C, Shi X, Korff S, Zhang J, Loughran PA, Ruan X, Zhang Y, Liu L, Billiar TR (2013) CD14 contributes to warm hepatic ischemia-reperfusion injury in mice. Shock (Augusta, Ga.) 40(2): 115

  46. Huebener P, Pradere JP, Hernandez C et al (2015) The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 125:539–550

    Article  Google Scholar 

  47. Caulin C, Salvesen GS, Oshima RG (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138(6):1379–1394 ([PubMed: 9298992])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mannery YO, McClain CJ, Vos MB (2011) Keratin 18, apoptosis, and liver disease in children. Curr Pediatr Rev 7(4): 310–315

  49. Leers MP, Kölgen W, Björklund V, Bergman T, Tribbick G, Persson B, Björklund P, Ramaekers FC, Björklund B, Nap M, Jörnvall H (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol 187(5):567–572

    Article  CAS  PubMed  Google Scholar 

  50. de Haas EC, di Pietro A, Simpson KL, Meijer C, Suurmeijer AJ, Lancashire LJ, Cummings J, de Jong S, de Vries EG, Dive C, Gietema JA (2008) Clinical evaluation of M30 and M65 ELISA cell death assays as circulating biomarkers in a drug-sensitive tumor, testicular cancer. Neoplasia 10(10):1041–1048

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tarrant J (2017) Emerging translatable safety biomarkers. Comprehensive medicinal chemistry III, pp 255–284. Elsevier, Oxford

  52. Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87(3):505–516

    Article  CAS  PubMed  Google Scholar 

  53. O'brien PJ, Slaughter MR, Polley SR, Kramer K (2002) Advantages of glutamate dehydrogenase as a blood biomarker of acute hepatic injury in rats. Lab Anim 36(3): 313–321

  54. McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Investig 122(4):1574–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giffen PS, Pick CR, Price MA, Williams A, York MJ (2002) Alpha-glutathione S-transferase in the assessment of hepatotoxicity—its diagnostic utility in comparison with other recognized markers in the Wistar Han rat. Toxicol Pathol 30(3):365–372

    Article  CAS  PubMed  Google Scholar 

  56. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245(3):194–205

    Article  CAS  PubMed  Google Scholar 

  57. Smith GS, Walter GL, Walker RM (2013) Clinical pathology in non-clinical toxicology testing. In: Haschek and Rousseaux’s handbook of toxicologic pathology, pp 565–594. Academic Press

  58. Zelewski M, Swierczyński J (1991) Malic enzyme in human liver. Intracellular distribution, purification and properties of cytosolic isozyme. Eur J Biochem 201(2): 339–345

  59. Zieve L, Anderson WR, Dozeman R, Draves K, Lyftogt C (1985) Acetaminophen liver injury: sequential changes in two biochemical indices of regeneration and their relationship to histologic alterations. J Lab Clin Med 105(5):619–624

    CAS  PubMed  Google Scholar 

  60. Kawai M, Hosaki S (1990) Clinical usefulness of malate dehydrogenase and its mitochondrial isoenzyme in comparison with aspartate aminotransferase and its mitochondrial isoenzyme in sera of patients with liver disease. Clin Biochem 23(4):327–334

    Article  CAS  PubMed  Google Scholar 

  61. Misra MK, Khanna AK, Sharma R, Srinivasan S (1991) Serum malate dehydrogenase (MDH) in portal hypertension—its value as a diagnostic and prognostic indicator. Indian J Med Sci 45(2):31–34

    CAS  PubMed  Google Scholar 

  62. Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243(2):167–179

    Article  CAS  PubMed  Google Scholar 

  63. Koo DJ, Zhou M, Chaudry IH, Wang P (2000) Plasma α-glutathione S-transferase: a sensitive indicator of hepatocellular damage during polymicrobial sepsis. Arch Surg 135(2):198–203

    Article  CAS  PubMed  Google Scholar 

  64. Loguercio C, Tuccillo C, Caporaso N, Blanco GD, Morisco F, Guerriero C, Di Santolo SS, Valenza LM, Blanco CD (1998) Determination of plasma alpha‐glutathione S‐transferases in patients with HCV‐related chronic infection: its significance and possible clinical relevance. Liver 18(3): 166–172

  65. Suehiro T, Matsumata T, Shikada Y, Shimada M, Shirabe K, Sugimachi K (2004) Change in alpha glutathione s-transferase levels during liver resection. Hepatogastroenterology 51(60):1747–1750

    PubMed  Google Scholar 

  66. Czuczejko J, Mila-Kierzenkowska C, Szewczyk-Golec K (2019) Plasma α-glutathione S-transferase evaluation in patients with acute and chronic liver injury. Can J Gastroenterol Hepatol 20:2019

    Google Scholar 

  67. Higuchi H, Adachi Y, Wada H, Kanno M, Satoh T (2001) Comparison of plasma α glutathione S-transferase concentrations during and after low-flow sevoflurane or isoflurane anaesthesia. Acta Anaesthesiol Scand 45(10):1226–1229

    Article  CAS  PubMed  Google Scholar 

  68. Rodrigo L, Hernández AF, Lopez-Caballero JJ, Gil F, Pla A (2001) Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chemico-Biol Interact 137(2): 123–137

  69. Ferré N, Camps J, Prats E, Vilella E, Paul A, Figuera L, Joven J (2002) Serum paraoxonase activity: a new additional test for the improved evaluation of chronic liver damage. Clin Chem 48(2):261–268

    Article  PubMed  Google Scholar 

  70. Feingold KR, Memon RA, Moser AH, Grunfeld C (1998) Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139(2):307–315

    Article  CAS  PubMed  Google Scholar 

  71. Meneses-Lorente G, Guest PC, Lawrence J, Muniappa N, Knowles MR, Skynner HA, Salim K, Cristea I, Mortishire-Smith R, Gaskell SJ, Watt A (2004) A proteomic investigation of drug-induced steatosis in rat liver. Chem Res Toxicol 17(5):605–612

    Article  CAS  PubMed  Google Scholar 

  72. Furlong CE, Cole TB, Jarvik GP, Costa LG (2002) Pharmacogenomic considerations of the paraoxonase polymorphisms. Pharmacogenomics 3(3):341–348

    Article  CAS  PubMed  Google Scholar 

  73. Ha MJ, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15: 509–524

  74. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arrese M, Eguchi A, Feldstein AE (2015) Circulating microRNAs: emerging biomarkers of liver disease. In: Seminars in liver disease, vol 35, no 01, pp 043–054. Thieme Medical Publishers

  76. Pirola CJ, Gianotti TF, Castaño GO, Mallardi P, San Martino J, Ledesma MM, Flichman D, Mirshahi F, Sanyal AJ, Sookoian S (2015) Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 64(5):800–812

    Article  CAS  PubMed  Google Scholar 

  77. Clarke JD, Sharapova T, Lake AD, Blomme E, Maher J, Cherrington NJ (2014) Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis. J Appl Toxicol 34(6):726–732

    Article  CAS  PubMed  Google Scholar 

  78. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, Hamajima N (2013) Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 23(424):99–103

    Article  Google Scholar 

  79. Longchamps RJ, Abey SK, Martino AC, Henderson WA (2014) Gender-associated cell-free microRNA profiles in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 39(9):997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE 6(1):e16081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1):209–218

    Article  CAS  PubMed  Google Scholar 

  83. Braconi C, Henry JC, Kogure T, Schmittgen T, Patel T (2011) The role of microRNAs in human liver cancers. In: Seminars in oncology, vol 38, no 6, pp 752–763. WB Saunders

  84. Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, Ward J, Alao H, Kodys K, Szabo G (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56(5):1946–1957

    Article  CAS  PubMed  Google Scholar 

  85. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci 106(11):4402–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su YW, Chen X, Jiang ZZ, Wang T, Wang C, Zhang Y, Wen J, Xue M, Zhu D, Zhang Y, Su YJ (2012) A panel of serum microRNAs as specific biomarkers for diagnosis of compound- and herb-induced liver injury in rats. PLoS ONE 7(5):e37395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Starkey Lewis PJ et al (2011) Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54: 1767–1776

  88. Bala S, Tilahun Y, Taha O, Alao H, Kodys K, Catalano D, Szabo G (2012) Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J Transl Med 10(1):1

    Article  Google Scholar 

  89. Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, Sun S (2012) Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology 56(5):1631–1640

    Article  CAS  PubMed  Google Scholar 

  90. Ji F, Yang B, Peng X, Ding H, You H, Tien P (2011) Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepatitis 18(7):e242–e251

    Article  CAS  Google Scholar 

  91. Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H, Fei M, Sun S (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56(12):1830–1838

    Article  CAS  PubMed  Google Scholar 

  92. Senger DR, Wirth DF, Hynes RO (1979) Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16(4):885–893

    Article  CAS  PubMed  Google Scholar 

  93. Nagoshi S (2014) Osteopontin: versatile modulator of liver diseases. Hepatol Res 44(1):22–30

    Article  CAS  PubMed  Google Scholar 

  94. Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X, Ge X, Fiel MI, Nieto N (2012) Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin αVβ3 engagement and PI3K/pAkt/NFκB signaling. Hepatology 55(2):594–608

    Article  CAS  PubMed  Google Scholar 

  95. Kawashima R, Mochida S, Matsui A, YouLuTuZ Y, Ishikawa K, Toshima K, Yamanobe F, Inao M, Ikeda H, Ohno A, Nagoshi S (1999) Expression of osteopontin in Kupffer cells and hepatic macrophages and stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun 256(3):527–531

    Article  CAS  PubMed  Google Scholar 

  96. Bruha R, Vitek L, Smid V (2020) Osteopontin—a potential biomarker of advanced liver disease. Ann Hepatol 19(4):344–352

    Article  CAS  PubMed  Google Scholar 

  97. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, Nakanishi K, Fujimoto I, Inoue A, Yamazaki H, Kawashima T (1993) Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 328(25):1797–1801

    Article  CAS  PubMed  Google Scholar 

  98. Di Bisceglie AM, Sterling RK, Chung RT, Everhart JE, Dienstag JL, Bonkovsky HL, Wright EC, Everson GT, Lindsay KL, Lok AS, Lee WM (2005) Serum alpha-fetoprotein levels in patients with advanced hepatitis C: results from the HALT-C trial. J Hepatol 43(3):434–441

    Article  PubMed  Google Scholar 

  99. Ikoma J, Kaito M, Ishihara T, Nakagawa N, Kamei A, Fujita N, Iwasa M, Tamaki S, Watanabe S, Adachi Y (2002) Early diagnosis of hepatocellular carcinoma using a sensitive assay for serum des-gamma-carboxy prothrombin: a prospective study. Hepatogastroenterology 49(43):235–238

    CAS  PubMed  Google Scholar 

  100. Okuda H, Nakanishi T, Takatsu K, Saito A, Hayashi N, Yamamoto M, Takasaki K, Nakano M (2001) Comparison of clinicopathological features of patients with hepatocellular carcinoma seropositive for α-fetoprotein alone and those seropositive for des-γ-carboxy prothrombin alone 1. J Gastroenterol Hepatol 16(11):1290–1296

    Article  CAS  PubMed  Google Scholar 

  101. Waikar Y (2019) Biomarkers of liver injury. Indian J Pediatr 8(2):70

    Google Scholar 

  102. Lala V, Zubair M, Minter D (2023) Liver function tests. StatPearls

  103. Adigun OO, Yarrarapu SN, Zubair M, Khetarpal S (2023) Alpha fetoprotein. StatPearls

  104. Nourkami-Tutdibi N, Graf N, Beier R, Zemlin M, Tutdibi E (2020) Plasma levels of osteopontin from birth to adulthood. Pediatr Blood Cancer 67(7):e28272

    Article  CAS  PubMed  Google Scholar 

  105. Štros M, Polanská EV, Hlaváčová T, Skládal P (2022) Progress in assays of HMGB1 levels in human plasma—the potential prognostic value in COVID-19. Biomolecules 12(4):544

    Article  PubMed  PubMed Central  Google Scholar 

Download references


I wish to express my sincere gratitude to S. Gurvinder Singh Bahra, Hon’ble Chancellor and Chairman, Rayat Bahra University, Mohali, who gave me a platform for pursuing masters work in this esteemed University. I am greatly indebted to Prof. (Dr.) Parvinder Singh, worthy Vice Chancellor, for graciously permitting me to carry on the research work.


This article received no funding.

Author information

Authors and Affiliations



Sukhbir Singh Tamber, Palak Bansal, and Ramica Sharma designed the study. Sukhbir Singh Tamber wrote the first draft of the manuscript. Suraj Sharma and Rai Barinder Singh provided constructive suggestions for improving the work. Ramica Sharma edited and reviewed the manuscript. Rai Barinder Singh also helped in revising the manuscript.

Corresponding author

Correspondence to Ramica Sharma.

Ethics declarations

Conflict of interest

There are no conflicts of interest between the authors.

Ethical approval and consent to participate

Not applicable.

Consent of publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamber, S.S., Bansal, P., Sharma, S. et al. Biomarkers of liver diseases. Mol Biol Rep 50, 7815–7823 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: