Skip to main content
Log in

Comprehensive analysis using DNA metabarcoding, SCAR marker based PCR assay, and HPLC unveils the adulteration in Brahmi herbal products

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Brahmi is one of the important nootropic botanicals, widely sold in the market, with the name “Brahmi’’ being used to describe both Bacopa monnieri and Centella asiatica species. The Brahmi herbal products market is expanding; hence, economically motivated adulteration is highly prevalent.

Methods and results

This study aimed to develop DNA-based methods, including SCAR marker-based PCR and metabarcoding, to authenticate Brahmi herbal products and compare these methods with HPLC. These methods have been validated using mock controls (in-house blended formulations). All targeted plant species in mock controls were detected successfully with all three methods, whereas, in market samples, only 22.2%, 55.6%, and 50.0% were found positive for Brahmi by PCR assay, DNA metabarcoding, and HPLC, respectively. Metabarcoding can detect the presence of non-labeled plants together with targeted species, which is an advantage over PCR assay or HPLC.

Conclusion

SCAR marker-based PCR is a rapid and cost-effective method for detecting the presence of B. monnieri and C. asiatica. However, in this study, the success rate of PCR amplification was relatively low because the primers targeted either RAPD or ITS-based SCAR markers. HPLC assay, although an alternative, was unable to detect the presence of other botanicals, just like the SCAR marker-based PCR assay. On the other hand, metabarcoding can be utilized to identify the target plants, even in very small quantities, while also providing simulated identification of other botanicals. This study successfully addressed the need for quality control of Brahmi herbal products and provided the first-time report of DNA metabarcoding for such products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

This article and its supplementary information files include all data generated or analyzed during this study.

References

  1. Shinomol GK, Muralidhara MS, Bharath M (2011) Exploring the role of “Brahmi” (Bacopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat Endocr Metab Immune Drug Discov 5:33–49. https://doi.org/10.2174/187221411794351833

    Article  CAS  PubMed  Google Scholar 

  2. Mathur D, Goyal K, Koul V, Anand A (2016) The molecular links of re-emerging therapy: a review of evidence of brahmi (Bacopa monniera). Front Pharmacol 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhat R, Kiran K, Arun AB, Karim AA (2010) Determination of mineral composition and heavy metal content of some nutraceutically valued plant products. Food Anal Methods 3:181–187. https://doi.org/10.1007/s12161-009-9107-y

    Article  Google Scholar 

  4. Keshari P (2021) Controversy, adulteration and substitution: burning problems in ayurveda practices. Nat Med Plants. https://doi.org/10.5772/intechopen.98220

    Article  Google Scholar 

  5. Meena H, Pandey HK, Pandey P et al (2012) Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica. Indian J Pharmacol 44:114

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mahima K, Sunil Kumar KN, Rakhesh KV et al (2022) Advancements and future prospective of DNA barcodes in the herbal drug industry. Front Pharmacol 13:1–19. https://doi.org/10.3389/fphar.2022.947512

    Article  CAS  Google Scholar 

  7. Aguiar S, Borowski T (2013) Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 16:313–326. https://doi.org/10.1089/rej.2013.1431

    Article  PubMed  PubMed Central  Google Scholar 

  8. Soumyanath A, Zhong Y-P, Yu X et al (2010) Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmacol 57:1221–1229. https://doi.org/10.1211/jpp.57.9.0018

    Article  CAS  Google Scholar 

  9. Singh RH, Narsimhamurthy K, Singh G (2008) Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology 9:369–374. https://doi.org/10.1007/s10522-008-9185-z

    Article  PubMed  Google Scholar 

  10. Niraj S, Varsha S (2019) Role of Medhya Rasayanas (nootropic drugs) in developmental disabilities of children. Ment Retard 25:30

    Google Scholar 

  11. Kulkarni R, Girish KJ, Kumar A (2012) Nootropic herbs (Medhya Rasayana) in Ayurveda: an update. Pharmacogn Rev 6:147–153. https://doi.org/10.4103/0973-7847.99949

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goraya GS, Ved DK Medicinal plants in India: an assessment of their demand and supply. Natl Med Plants Board, Minist AYUSH (2017) Gov India, New Delhi Indian Counc For Res Educ Dehradun 100–105

  13. Abdul Manap AS, Vijayabalan S, Madhavan P et al (2019) Bacopa monnieri, a neuroprotective lead in Alzheimer disease: a review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights 13:1177392819866412. https://doi.org/10.1177/1177392819866412

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brahmi Market Forecast (2021–2026) Industry ARC. https://www.industryarc.com/Research/Brahmi- Market-Research-507354

  15. Yadav A, Ahmad J, Chaudhary AA, Ahmad A (2012) Development of sequence characterized amplified region (SCAR) marker for the authentication of Bacopa monnieri (L.) Wettst. Eur J Med Plants 2:186–198

    Article  Google Scholar 

  16. Balaji R, Parani M (2022) DNA barcoding of the market samples of single-drug herbal powders reveals adulteration with taxonomically unrelated plant species. Diversity. https://doi.org/10.3390/d14060495

    Article  Google Scholar 

  17. Alqahtani A, Cho J-L, Wong KH et al (2017) Differentiation of three Centella species in Australia as inferred from morphological characteristics, ISSR molecular fingerprinting and phytochemical composition. Front Plant Sci 8:1980

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pant P, Pandey S, Dall’Acqua S (2021) The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chem Biodivers 18:e2100345

    Article  CAS  PubMed  Google Scholar 

  19. Raclariu AC, Heinrich M, Ichim MC, de Boer H (2018) Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem Anal 29:123–128. https://doi.org/10.1002/pca.2732

    Article  CAS  PubMed  Google Scholar 

  20. Newmaster SG, Grguric M, Shanmughanandhan D et al (2013) DNA barcoding detects contamination and substitution in north american herbal products. BMC Med 11:222. https://doi.org/10.1186/1741-7015-11-222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu HY, Shaw PC (2022) Strategies for molecular authentication of herbal products: from experimental design to data analysis. Chin Med (United Kingdom) 17:1–15. https://doi.org/10.1186/s13020-022-00590-y

    Article  CAS  Google Scholar 

  22. Sharma S, Shrivastava N (2016) DNA-based simultaneous identification of three Terminalia species targeting adulteration. Pharmacogn Mag 12:S379–S383. https://doi.org/10.4103/0973-1296.185776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang T, Xu F, Ruhsam M et al (2022) A nucleotide signature for the identification of Pinelliae Rhizoma (Banxia) and its products. Mol Biol Rep 49:7753–7763. https://doi.org/10.1007/s11033-022-07600-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Travadi T, Sharma S, Pandit R et al (2022) A duplex PCR assay for authentication of Ocimum basilicum L. and Ocimum tenuiflorum L in Tulsi churna. Food Control 137:108790. https://doi.org/10.1016/j.foodcont.2021.108790

    Article  CAS  Google Scholar 

  25. Travadi T, Shah AP, Pandit R et al (2022) Detection of Carica papaya adulteration in Piper nigrum using chloroplast DNA marker-based PCR assays. Food Anal Methods. https://doi.org/10.1007/s12161-022-02395-z

    Article  Google Scholar 

  26. Vassou SL, Nithaniyal S, Raju B, Parani M (2016) Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in ayurvedic medicine. BMC Complement Altern Med 16. https://doi.org/10.1186/s12906-016-1086-0

  27. Intharuksa A, Sasaki Y, Ando H et al (2019) The combination of ITS2 and psba-trnh region is powerful DNA barcode markers for authentication of medicinal Terminalia plants from Thailand. J Nat Med. https://doi.org/10.1007/s11418-019-01365-w

    Article  PubMed  Google Scholar 

  28. Tanaka S, Ito M (2020) DNA barcoding for identification of agarwood source species using trnl-trnf and matK DNA sequences. J Nat Med 74:42–50. https://doi.org/10.1007/s11418-019-01338-z

    Article  CAS  PubMed  Google Scholar 

  29. Thakur VV, Tripathi N, Tiwari S (2021) DNA barcoding of some medicinally important plant species of Lamiaceae family in India. Mol Biol Rep 48:3097–3106. https://doi.org/10.1007/s11033-021-06356-3

    Article  CAS  PubMed  Google Scholar 

  30. Pang X, Shi L, Song J et al (2013) Use of the potential DNA barcode ITS2 to identify herbal materials. J Nat Med 67:571–575. https://doi.org/10.1007/s11418-012-0715-2

    Article  CAS  PubMed  Google Scholar 

  31. Seethapathy GS, Raclariu-Manolica A-C, Anmarkrud JA et al (2019) DNA metabarcoding authentication of ayurvedic herbal products on the european market raises concerns of quality and fidelity. Front Plant Sci 10:68

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raclariu AC, Ţebrencu CE, Ichim MC et al (2018) What’s in the box? Authentication of Echinacea herbal products using DNA metabarcoding and HPTLC. Phytomedicine 44:32–38. https://doi.org/10.1016/j.phymed.2018.03.058

    Article  CAS  PubMed  Google Scholar 

  33. Arulandhu AJ, Staats M, Hagelaar R et al (2017) Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. Gigascience. https://doi.org/10.1093/gigascience/gix080

    Article  PubMed  PubMed Central  Google Scholar 

  34. Frigerio J, Agostinetto G, Mezzasalma V et al (2021) DNA-based herbal teas’ authentication: an ITS2 and psba‐trnh multi‐marker DNA metabarcoding approach. Plants 10:1–14. https://doi.org/10.3390/plants10102120

    Article  CAS  Google Scholar 

  35. Travadi T, Shah AP, Pandit R et al (2023) A combined approach of DNA metabarcoding collectively enhances the detection efficiency of medicinal plants in single and polyherbal formulations. Front Plant Sci 14:1169984

    Article  PubMed  PubMed Central  Google Scholar 

  36. Raclariu AC, Mocan A, Popa MO et al (2017) Veronica officinalis product authentication using DNA metabarcoding and HPLC-MS reveals widespread adulteration with Veronica chamaedrys. Front Pharmacol 8:378

    Article  PubMed  Google Scholar 

  37. Sánchez M, González-Burgos E, Divakar PK, Gómez-Serranillos MP (2020) DNA-based authentication and metabolomics analysis of medicinal plants samples by DNA barcoding and ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC-MS). Plants 9:1601

    Article  PubMed  PubMed Central  Google Scholar 

  38. The Indian Pharmacopoeia Commission (2007) Indian pharmacopoeia. Vol III

  39. Maloukh L, Kumarappan A, Jarrar M et al (2017) Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech 7:1–7

    Article  Google Scholar 

  40. Travadi T, Sharma S, Pandit R et al (2022) A duplex PCR assay for authentication of Ocimum basilicum L. and Ocimum tenuiflorum L. in Tulsi churna. Food Control. https://doi.org/10.1016/j.foodcont.2021.108790

    Article  Google Scholar 

  41. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. https://doi.org/10.1385/1-59259-192-2:365

    Article  CAS  PubMed  Google Scholar 

  42. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:43–46. https://doi.org/10.1093/nar/gkm234

    Article  Google Scholar 

  43. Dormontt EE, Van Dijk K-J, Bell KL et al (2018) Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections—an australian perspective. Front Ecol Evol 6:134

    Article  Google Scholar 

  44. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang Y, Niu B, Gao Y et al (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. https://doi.org/10.1093/bioinformatics/btq003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  47. Deepak M, Sangli GK, Arun PC, Amit A (2005) Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 16:24–29. https://doi.org/10.1002/pca.805

    Article  CAS  PubMed  Google Scholar 

  48. Urumarudappa SKJ, Tungphatthong C, Prombutara P, Sukrong S (2020) DNA metabarcoding to unravel plant species composition in selected herbal medicines on the national list of essential medicines (NLEM) of Thailand. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-75305-0

    Article  CAS  Google Scholar 

  49. Anthoons B, Karamichali I, Schrøder-Nielsen A et al (2021) Metabarcoding reveals low fidelity and presence of toxic species in short chain-of-commercialization of herbal products. J Food Compos Anal 97:103767

    Article  CAS  Google Scholar 

  50. Ichim MC (2019) The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Front Pharmacol 10:1–9. https://doi.org/10.3389/fphar.2019.01227

    Article  CAS  Google Scholar 

  51. Raclariu AC, Paltinean R, Vlase L et al (2017) Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS. Sci Rep 7:8–10. https://doi.org/10.1038/s41598-017-01389-w

    Article  CAS  Google Scholar 

  52. Bansal A, Chhabra V, Rawal RK, Sharma S (2014) Chemometrics: a new scenario in herbal drug standardization. J Pharm Anal 4:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taberlet P, Coissac E, Pompanon F et al (2007) Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14–e14

    Article  PubMed  Google Scholar 

  54. Little DP (2014) A DNA mini-barcode for land plants. Mol Ecol Resour 14:437–446

    Article  CAS  PubMed  Google Scholar 

  55. Zhu S, Liu Q, Qiu S et al (2022) DNA barcoding: an efficient technology to authenticate plant species of traditional chinese medicine and recent advances. Chin Med 17:1–17

    Article  Google Scholar 

  56. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  57. de Boer HJ, Ichim MC, Newmaster SG (2015) DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf 38:611–620. https://doi.org/10.1007/s40264-015-0306-8

    Article  CAS  PubMed  Google Scholar 

  58. Seethapathy GS, Ganesh D, Santhosh Kumar JU et al (2015) Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Legal Med 129:693–700. https://doi.org/10.1007/s00414-014-1120-z

    Article  PubMed  Google Scholar 

  59. Sharma S, Shrivastava N (2016) Internal transcribed spacer guided multiplex PCR for species identification of Convolvulus prostratus and Evolvulus alsinoides. Acta Pharm Sin B 6:253–258. https://doi.org/10.1016/j.apsb.2016.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kumar A, Mishra P, Baskaran K et al (2016) Higher efficiency of ISSR markers over plastid psba-trnh region in resolving taxonomical status of genus Ocimum L. Ecol Evol 6:7671–7682

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xin T, Xu Z, Jia J et al (2018) Biomonitoring for traditional herbal medicinal products using DNA metabarcoding and single molecule, real-time sequencing. Acta Pharm Sin B 8:488–497. https://doi.org/10.1016/j.apsb.2017.10.001

    Article  PubMed  Google Scholar 

  62. Negi RK, Nautiyal P, Bhatia R, Verma R (2021) rbcL, a potential candidate DNA barcode loci for aconites: conservation of himalayan aconites. Mol Biol Rep 48:6769–6777. https://doi.org/10.1007/s11033-021-06675-5

    Article  CAS  PubMed  Google Scholar 

  63. Kiran KR, Swathy PS, Paul B et al (2021) Untargeted metabolomics and DNA barcoding for discrimination of Phyllanthus species. J Ethnopharmacol 273:113928. https://doi.org/10.1016/j.jep.2021.113928

    Article  CAS  PubMed  Google Scholar 

  64. Zhang X, Zhou T, Yu W et al (2018) Development and evaluation of a PCR-based assay kit for authentication of Zaocys dhumnades in traditional chinese medicine. Mitochondrial DNA Part A DNA Mapp Seq Anal 29:102–106. https://doi.org/10.1080/24701394.2016.1248429

    Article  CAS  Google Scholar 

  65. Noh P, Kim WJ, Yang S et al (2021) PCR-based rapid diagnostic tools for the authentication of medicinal mistletoe species. Phytomedicine 91:153667. https://doi.org/10.1016/j.phymed.2021.153667

    Article  CAS  PubMed  Google Scholar 

  66. Coghlan ML, Haile J, Houston J et al (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002657

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yao Q, Zhu X, Han M et al (2022) Decoding herbal materials of TCM preparations with the multi-barcode sequencing approach. Sci Rep 12:1–18. https://doi.org/10.1038/s41598-022-09979-z

    Article  CAS  Google Scholar 

  68. Cheng X, Su X, Chen X et al (2014) Biological ingredient analysis of traditional chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan. Sci Rep 4:1–12

    Article  Google Scholar 

  69. Ivanova NV, Kuzmina ML, Braukmann TWA et al (2016) Authentication of herbal supplements using next-generation sequencing. PLoS ONE 11:1–24. https://doi.org/10.1371/journal.pone.0156426

    Article  CAS  Google Scholar 

  70. Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439. https://doi.org/10.1038/nbt.2198

    Article  CAS  PubMed  Google Scholar 

  71. Salipante SJ, Kawashima T, Rosenthal C et al (2014) Performance comparison of Illumina and Ion Torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol 80:7583–7591. https://doi.org/10.1128/AEM.02206-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pawluczyk M, Weiss J, Links MG et al (2015) Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem 407:1841–1848. https://doi.org/10.1007/s00216-014-8435-y

    Article  CAS  PubMed  Google Scholar 

  73. Staats M, Arulandhu AJ, Gravendeel B et al (2016) Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem 408:4615–4630. https://doi.org/10.1007/s00216-016-9595-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hinchliff CE, Smith SA (2014) Some limitations of public sequence data for phylogenetic inference (in plants). PLoS ONE. https://doi.org/10.1371/journal.pone.0098986

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu C, Guo D, Liu L (2018) Quality transitivity and traceability system of herbal medicine products based on quality markers. Phytomedicine 44:247–257. https://doi.org/10.1016/j.phymed.2018.03.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Padamnabhi S. Nagar, The Maharaja Sayajirao University of Baroda, India, for helping us in plant collection and authentication, Mr. Dipesh Parikh, Technical assistance, GBRC for carrying out HPLC, Mr. Nitin Savaliya, Technical assistance from Thermo Fisher Scientific, for NGS instrument handling and run setup.

Funding

Gujarat State Biotechnology Mission (GSBTM), Gandhinagar, Gujarat, India, has financially supported the project under the Research Support Scheme, Grant ID GSBTM/JDRD/584/2018/204.

Author information

Authors and Affiliations

Authors

Contributions

APS: Performed experiments, Data Analysis, Writing, and Editing manuscript; TT: Performed experiments, Data Analysis, Writing, and Validation of manuscript; RP: Designed primers for metabarcoding, established metabarcoding data analysis pipeline, Manuscript editing; SS: Designed primers for CA, performed experiments, Manuscript editing; CJ: Project administration, Methodology, Supervision, and Review & Editing; MJ: Principal Investigator, Conceptualization, Methodology, Supervision, and Review & Editing.

Corresponding author

Correspondence to Madhvi Joshi.

Ethics declarations

Competing interests

The sequence of CA primers and the PCR conditions have been applied for an Indian patent (Application Number-202221035088).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The sequence of CA primers and the PCR conditions have been applied for an Indian patent (Application Number-202221035088).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2208.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.P., Travadi, T., Sharma, S. et al. Comprehensive analysis using DNA metabarcoding, SCAR marker based PCR assay, and HPLC unveils the adulteration in Brahmi herbal products. Mol Biol Rep 50, 7605–7618 (2023). https://doi.org/10.1007/s11033-023-08653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08653-5

Keywords

Navigation