Skip to main content
Log in

Development and validation of most efficient RNA isolation method from buffalo bull spermatozoa

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Being highly fragmented and low in concentration, isolation of good quality RNA from sperm cells is a big challenge. Attempts have been made to evaluate various sperm RNA isolation methods from purified buffalo bull sperm cells.

Methods

Both, non-membrane and membrane-based methods have been evaluated for isolating RNA from Murrah buffalo sperms and compared for their respective efficacies. The traditional TRIzol, TRIzol-heat lysed (H-TRIzol) and cocktail of TCEP-RLT lysis buffer (Qiagen RNeasy mini kit)-TRIzol (C-TRIzol) based isopropanol isolation methods have been evaluated.

Results

H-TRIzol yielded best results among conventional methods. The combined T-RLT RNA isolation protocol yielded best quality and quantity compared to other membrane-based methods, due to high lytic property of cocktail of lysis reagents, necessary for complete breakdown of sperm membrane and RNA binding membrane for RNA isolation. Combined lysis performed by treatment with RLT-T and T-RLT differing in order of reagents used were also evaluated. T-RLT combination giving better results compared to RLT-T due to high gDNA contamination and membrane clogging in later protocol steps.

Conclusion

Overall, in terms of total RNA quantity and quality per million spermatozoa, the heat-lysed TRIzol method (H-TRIzol) performs best among RNA separation techniques employed and is also quite easy to perform. This comparative evaluation of sperm RNA isolation protocols can be useful in deciding the best protocol for isolation of good quality and high concentration sperm RNA from buffalo semen, for transcriptome and other downstream studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Bissonnette N, Lévesque-Sergerie JP, Thibault C, Boissonneault G (2009) Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality. Reproduction 138(1):65–80. https://doi.org/10.1530/REP-08-0503

    Article  CAS  PubMed  Google Scholar 

  2. Ganguly I, Gaur GK, Kumar S, Mandal DK, Kumar M, Singh U, Kumar S, Sharma A (2013) Differential expression of protamine 1 and 2 genes in mature spermatozoa of normal and motility impaired semen producing crossbred Frieswal (HF× Sahiwal) bulls. Res Vet Sci 94(2):256–262. https://doi.org/10.1016/j.rvsc.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Parthipan S, Selvaraju S, Somashekar L, Arangasamy A, Sivaram M, Ravindra JP (2017) Spermatozoal transcripts expression levels are predictive of semen quality and conception rate in bulls (Bos taurus). Theriogenology 98:41–49. https://doi.org/10.1016/j.theriogenology.2017.04.042

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Yang C, Guo F, Zhang Y, Ju Z, Jiang Q, Zhao X, Liu Y, Zhao H, Wang J, Sun Y, Wang C, Zhu H, Huang J (2019) Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci Rep 9(1):2092. https://doi.org/10.1038/s41598-018-38462-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo L, Chao SB, Xiao L, Wang ZB, Meng TG, Li YY, Han ZM, Ouyang YC, Hou Y, Sun QY, Ou XH (2017) Sperm-carried RNAs play critical roles in mouse embryonic development. Oncotarget 8(40):67394–67405. https://doi.org/10.18632/oncotarget.18672

    Article  PubMed  PubMed Central  Google Scholar 

  6. Talluri TR, Kumaresan A, Sinha MK, Paul N, King ES, J. P., Datta TK (2022) Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility. Sci Rep 12(1):10692. https://doi.org/10.1038/s41598-022-14589-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reshi QUA, Godakumara K, Ord J, Dissanayake K, Hasan MM, Andronowska A, Heath P, Fazeli A (2022) Spermatozoa, acts as an external cue and alters the cargo and production of the extracellular vesicles derived from oviductal epithelial cells in vitro. J Cell Communication Signal. https://doi.org/10.1007/s12079-022-00715-w

    Article  Google Scholar 

  8. Card CJ, Anderson EJ, Zamberlan S, Krieger KE, Kaproth M, Sartini BL (2013) Cryopreserved bovine spermatozoal transcript profile as revealed by high-throughput ribonucleic acid sequencing. Biol Reprod 88(2):49. https://doi.org/10.1095/biolreprod.112.103788

    Article  CAS  PubMed  Google Scholar 

  9. Boerke A, Dieleman SJ, Gadella BM (2007) A possible role for sperm RNA in early embryo development. Theriogenology 68 Suppl 1:S147–S155. https://doi.org/10.1016/j.theriogenology.2007.05.058

    Article  CAS  Google Scholar 

  10. Hernández-Silva G, Caballero-Campo P, Chirinos M (2022) Sperm mRNAs as potential markers of male fertility. Reprod Biol 22(2):100636. https://doi.org/10.1016/j.repbio.2022.100636

    Article  PubMed  Google Scholar 

  11. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP (2011) A survey of small RNAs in human sperm. Hum Reprod 26(12):3401–3412. https://doi.org/10.1093/humrep/der329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41(7):4104–4117. https://doi.org/10.1093/nar/gkt132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Binsila K, Arangasamy B, A., Ravindra JP (2017) Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 7(1):42392. https://doi.org/10.1038/srep42392

    Article  PubMed  PubMed Central  Google Scholar 

  14. Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD, Chowdhary BP, Raudsepp T (2013) Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS ONE 8(2):e56535. https://doi.org/10.1371/journal.pone.0056535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429(6988):154. https://doi.org/10.1038/429154a

    Article  CAS  PubMed  Google Scholar 

  16. Roszkowski M, Mansuy IM (2021) High efficiency RNA extraction from sperm cells using Guanidinium Thiocyanate supplemented with tris (2-Carboxyethyl) phosphine. Front cell Dev biology 9:648274. https://doi.org/10.3389/fcell.2021.648274

    Article  Google Scholar 

  17. Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP (2015) Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem 482:32–39. https://doi.org/10.1016/j.ab.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  18. Raval NP, Shah TM, George LB, Joshi CG (2019) Insight into bovine (Bos indicus) spermatozoal whole transcriptome profile. Theriogenology 129:8–13. https://doi.org/10.1016/j.theriogenology.2019.01.037

    Article  CAS  PubMed  Google Scholar 

  19. Dewry RK, Mohanty TK, Nath S, Bhakat M, Yadav HP, Baithalu RK (2022) Modified methods for bovine sperm RNA isolation for consistent quality and RNA yield. bioRxiv, pp 2022–2005. preprint article

  20. Kasimanickam VR, Kasimanickam RK (2019) An efficient approach for RNA extraction from boar sperm and seminal plasma. Bio-Protocol 9(13):e3284. https://doi.org/10.21769/BioProtoc.3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vijayalakshmy K, Kumar P, Virmani M, Pawaria S, Lalaji NS, Sharma P, Rajendran R, Yadav PS, Kumar D (2018) A novel combination of silane-coated silica colloid with hybrid RNA extraction protocol and RNA enrichment for downstream applications of spermatozoal RNA. Andrologia 50(6):e13030. https://doi.org/10.1111/and.13030

    Article  CAS  PubMed  Google Scholar 

  22. Ibrahim S, Mahmoud KGM, Sosa ASA, Sakr AAM, El-Naby AAH, Nawito MF (2020) Establishment a protocol for total RNA isolation from buffalo fresh and frozen semen for molecular applications. Andrologia 52(4):e13526. https://doi.org/10.1111/and.13526

    Article  CAS  PubMed  Google Scholar 

  23. Arias ME, Andara K, Briones E, Felmer R (2017) Bovine sperm separation by swim-up and density gradients (Percoll and BoviPure): effect on sperm quality, function and gene expression. Reprod Biol 17(2):126–132. https://doi.org/10.1016/j.repbio.2017.03.002

    Article  PubMed  Google Scholar 

  24. Galarza DA, Jara DI, Paredes EB, Samaniego JX, Méndez MS, Soria ME, Perea F, Muñoz-León E, Santiago-Moreno J (2022) BoviPure® density-gradient centrifugation procedure enhances the quality of fresh and cryopreserved dog epididymal spermatozoa. Anim Reprod Sci 242:107003. https://doi.org/10.1016/j.anireprosci.2022.107003

    Article  CAS  PubMed  Google Scholar 

  25. Das PJ, Paria N, Gustafson-Seabury A, Vishnoi M, Chaki SP, Love CC, Varner DD, Chowdhary BP, Raudsepp T (2010) Total RNA isolation from stallion sperm and testis biopsies. Theriogenology 74(6):1099–1106. https://doi.org/10.1016/j.theriogenology.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  26. Jain YC, Anand SR (1976) Fatty acids and fatty aldehydes of buffalo seminal plasma and sperm lipid. J Reprod Infertil 47(2):261–267. https://doi.org/10.1530/jrf.0.0470261

    Article  CAS  Google Scholar 

  27. Gilbert I, Bissonnette N, Boissonneault G, Vallée M, Robert C (2007) A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction 133(6):1073–1086. https://doi.org/10.1530/REP-06-0292

    Article  CAS  PubMed  Google Scholar 

  28. Barragán M, Martínez A, Llonch S, Pujol A, Vernaeve V, Vassena R (2015) Effect of ribonucleic acid (RNA) isolation methods on putative reference genes messenger RNA abundance in human spermatozoa. Andrology 3(4):797–804. https://doi.org/10.1111/andr.12053

    Article  CAS  PubMed  Google Scholar 

  29. Nouvel A, Laget J, Duranton F, Leroy J, Desmetz C, Servais MD, de Préville N, Galtier F, Nocca D, Builles N, Rebuffat S, Lajoix AD (2021) Optimization of RNA extraction methods from human metabolic tissue samples of the COMET biobank. Sci Rep 11(1):20975. https://doi.org/10.1038/s41598-021-00355-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toni LS, Garcia AM, Jeffrey DA, Jiang X, Stauffer BL, Miyamoto SD, Sucharov CC (2018) Optimization of phenol-chloroform RNA extraction. MethodsX 5:599–608. https://doi.org/10.1016/j.mex.2018.05.011

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Receiving of Senior Research Fellowship of DBT by first author RV (DBT/2018/NDRI/996) is also acknowledged.

Funding

This work was supported by the Department of Biotechnology, Govt. of India, (Grant number BT/PR30439/AAQ/1/743/ 2019).

Author information

Authors and Affiliations

Authors

Contributions

Rashi Vasisth, Ankita Gurao, Namita Kumari: investigation, methodology. Gautam Kumar, Anurag Kumar, Karpenahalli Ranganatha Sriranga: samples and animal data collection. Mahesh Shivanand Dige, Rajeev Anand Kumar Aggarwal: sample processing. Manishi Mukesh, Pawan Singh and Ranjit Singh Kataria: conceptualization of experiments, data analysis, review and editing.

Corresponding author

Correspondence to Ranjit Singh Kataria.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent for publication

The manuscript has consent of all the authors for its publication in current format.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasisth, R., Gurao, A., Kumari, N. et al. Development and validation of most efficient RNA isolation method from buffalo bull spermatozoa. Mol Biol Rep 50, 6717–6727 (2023). https://doi.org/10.1007/s11033-023-08593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08593-0

Keywords

Navigation