Skip to main content

Advertisement

Log in

A review of basic to clinical targeted therapy and immunotherapy in uterine serous cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Uterine serous carcinomas show more frequent mutations of TP53, FBXW7, PIK3CA, and PP2R1A. Furthermore, cyclin-dependent kinase, human epidermal growth factor receptor 2, phosphatidylinositol 3-kinase/protein kinase B, and mammalian target of rapamycin signaling pathways are involved in uterine serous carcinoma progression. However, most patients with uterine serous carcinoma develop chemoresistance to paclitaxel and carboplatin. Moreover, uterine serous carcinoma shows immunosuppressive microenvironment with lower frequency of microsatellite instability. However, some clinical trials of human epidermal growth factor receptor 2/neu and WEE1 targeted therapies showed good effects in prolonging the survival in patients with uterine serous carcinoma. More effective targeted therapies and immunotherapies need to be developed in recurrent uterine serous carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  3. Pandita P, Wang X, Jones DE, Collins K, Hawkins SM (2019) Unique molecular features in high-risk histology endometrial cancers. Cancers (Basel) 11:1665. https://doi.org/10.3390/cancers11111665

    Article  CAS  PubMed  Google Scholar 

  4. Boruta DM, Gehrig PA, Fader AN, Olawaiye AB (2009) Management of women with uterine papillary serous cancer: a society of gynecologic oncology (SGO) review. Gynecol Oncol 115:142–153. https://doi.org/10.1016/j.ygyno.2009.06.011

    Article  PubMed  Google Scholar 

  5. Moore KN, Fader AN (2011) Uterine papillary serous carcinoma. Clin Obstet Gynecol 54:278–291. https://doi.org/10.1097/GRF.0b013e318218c755

    Article  PubMed  Google Scholar 

  6. Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB et al (2013) Type I and II endometrial cancers: have they different risk factors? J Clin Oncol 31:2607–2618. https://doi.org/10.1200/JCO.2012.48.2596

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhong X, Wang J, Kaku T, Wang Z, Li X, Wei L (2018) Prognostic factors of uterine serous carcinoma—a multicenter study. Int J Gynecol Cancer 28:1138–1144. https://doi.org/10.1097/IGC.0000000000001272

    Article  PubMed  Google Scholar 

  8. Holman LL, Pal N, Iglesias DA, Soliman PT, Balakrishnan N, Klopp A et al (2017) Factors prognostic of survival in advanced-stage uterine serous carcinoma. Gynecol Oncol 146:27–33. https://doi.org/10.1016/j.ygyno.2017.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  9. Black C, Feng A, Bittinger S, Quinn M, Neesham D, McNally O (2016) Uterine papillary serous carcinoma: a single-institution review of 62 cases. Int J Gynecol Cancer 26:133–140. https://doi.org/10.1097/IGC.0000000000000569

    Article  PubMed  Google Scholar 

  10. Fader AN, Roque DM, Siegel E, Buza N, Hui P, Abdelghany O et al (2018) Randomized phase II trial of carboplatin–paclitaxel versus carboplatin–paclitaxel–trastuzumab in uterine serous carcinomas that overexpress human epidermal growth factor receptor 2/neu. J Clin Oncol 36:2044–2051. https://doi.org/10.1200/JCO.2017.76.5966

    Article  CAS  PubMed  Google Scholar 

  11. Fader AN, Roque DM, Siegel E, Buza N, Hui P, Abdelghany O et al (2020) Randomized Phase II trial of carboplatin-paclitaxel compared with carboplatin-paclitaxel-trastuzumab in advanced (stage III–IV) or recurrent uterine serous carcinomas that overexpress Her2/Neu (NCT01367002): updated overall survival analysis. Clin Cancer Res 26:3928–3935. https://doi.org/10.1158/1078-0432.CCR-20-0953

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu JF, Xiong N, Campos SM, Wright AA, Krasner C, Schumer S et al (2021) Phase II study of the WEE1 inhibitor adavosertib in recurrent uterine serous carcinoma. J Clin Oncol 39:1531–1539. https://doi.org/10.1200/JCO.20.03167

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Oza AM, Colombo N, Oaknin A, Adagio (2022) A phase IIb international study of the Wee1 inhibitor adavosertib in women with recurrent or persistent uterine serous carcinoma. Int J Gynecol Cancer 32:89–92. https://doi.org/10.1136/ijgc-2021-003144

    Article  PubMed  Google Scholar 

  14. Zhang L, Kwan SY, Wong KK, Solaman PT, Lu KH, Mok SC (2020) Pathogenesis and clinical management of uterine serous carcinoma. Cancers (Basel) 12:686. https://doi.org/10.3390/cancers12030686

    Article  CAS  PubMed  Google Scholar 

  15. Makker V, Taylor MH, Aghajanian C, Oaknin A, Mier J, Cohn AL et al (2020) Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J Clin Oncol 38:2981–2992. https://doi.org/10.1200/JCO.19.02627

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vonderheide RH (2018) The immune revolution: a case for priming, not checkpoint. Cancer Cell 33:563–569. https://doi.org/10.1016/j.ccell.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piulats JM, Guerra E, Gil-Martín M, Roman-Canal B, Gatius S, Sanz-Pamplona R et al (2017) Molecular approaches for classifying endometrial carcinoma. Gynecol Oncol 145:200–207. https://doi.org/10.1016/j.ygyno.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  18. Yan C, Richmond A (2021) Hiding in the dark: pan-cancer characterization of expression and clinical relevance of CD40 to immune checkpoint blockade therapy. Mol Cancer 20:146. https://doi.org/10.1186/s12943-021-01442-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diggs LP, Ruf B, Ma C, Heinrich B, Cui L, Zhang Q et al (2021) CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. J Hepatol 74:1145–1154. https://doi.org/10.1016/j.jhep.2020.11.037

    Article  CAS  PubMed  Google Scholar 

  20. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E (2016) Endometrial cancer. Lancet 387:1094–1108. https://doi.org/10.1016/S0140-6736(15)00130-0

    Article  PubMed  Google Scholar 

  21. Bell DW, Ellenson LH (2019) Molecular genetics of endometrial carcinoma. Annu Rev Pathol 14:339–367. https://doi.org/10.1146/annurev-pathol-020117-043609

    Article  CAS  PubMed  Google Scholar 

  22. Wheeler DT, Bell KA, Kurman RJ, Sherman ME (2000) Minimal uterine serous carcinoma: diagnosis and clinicopathologic correlation. Am J Surg Pathol 24:797–806. https://doi.org/10.1097/00000478-200006000-00004

    Article  CAS  PubMed  Google Scholar 

  23. Hui P, Kelly M, O’Malley DM, Tavassoli F, Schwartz PE (2005) Minimal uterine serous carcinoma: a clinicopathological study of 40 cases. Mod Pathol 18:75–82. https://doi.org/10.1038/modpathol.3800271

    Article  PubMed  Google Scholar 

  24. Němejcová K, Rosmusová J, Bártů M, Důra M, Tichá I, Dundr P (2017) Expression of glut-1 in normal endometrium and endometrial lesions: analysis of 336 cases. Int J Surg Pathol 25:389–396. https://doi.org/10.1177/1066896916683510

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn E, Bahadirli-Talbott A, Shih IeM (2014) Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Mod Pathol 27:1014–1019. https://doi.org/10.1038/modpathol.2013.209

    Article  CAS  PubMed  Google Scholar 

  26. Fadare O, Roma AA, Parkash V, Zheng W, Walavalkar V (2018) Does a p53 “Wild-type” Immunophenotype exclude a diagnosis of endometrial serous carcinoma? Adv Anat Pathol 25:61–70. https://doi.org/10.1097/PAP.0000000000000171

    Article  PubMed  Google Scholar 

  27. Lax SF (2004) Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch 444:213–223. https://doi.org/10.1007/s00428-003-0947-3

    Article  CAS  PubMed  Google Scholar 

  28. Liu Z, Wan G, Heaphy C, Bisoffi M, Griffith JK, Hu CA (2007) A novel loss-of-function mutation in TP53 in an endometrial cancer cell line and uterine papillary serous carcinoma model. Mol Cell Biochem 297:179–187. https://doi.org/10.1007/s11010-006-9345-x

    Article  CAS  PubMed  Google Scholar 

  29. Kuhn E, Wu RC, Guan B, Wu G, Zhang J, Wang Y et al (2012) Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst 104:1503–1513. https://doi.org/10.1093/jnci/djs345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al-Hussaini M, Stockman A, Foster H, McCluggage WG (2004) WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology 44:109–115. https://doi.org/10.1111/j.1365-2559.2004.01787.x

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein NS, Uzieblo A (2002) WT1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol 117:541–545. https://doi.org/10.1309/K84K-005F-TCB8-FV4B

    Article  PubMed  Google Scholar 

  32. Hirschowitz L, Ganesan R, McCluggage WG (2009) WT1, p53 and hormone receptor expression in uterine serous carcinoma. Histopathology 55:478–482. https://doi.org/10.1111/j.1365-2559.2009.03390.x

    Article  PubMed  Google Scholar 

  33. Tang S, Onuma K, Deb P, Wang E, Lytwyn A, Sur M et al (2012) Frequency of serous tubal intraepithelial carcinoma in various gynecologic malignancies: a study of 300 consecutive cases. Int J Gynecol Pathol 31:103–110. https://doi.org/10.1097/PGP.0b013e31822ea955

    Article  PubMed  Google Scholar 

  34. Jarboe EA, Miron A, Carlson JW, Hirsch MS, Kindelberger D, Mutter GL et al (2009) Coexisting intraepithelial serous carcinomas of the endometrium and fallopian tube: frequency and potential significance. Int J Gynecol Pathol 28:308–315. https://doi.org/10.1097/PGP.0b013e3181934390

    Article  PubMed  Google Scholar 

  35. Mu T, Li H, Wang J, Yao Y, Shen D (2015) Pathologic features of fallopian tubal fimbriae in patients with endometrial serous carcinoma. Zhonghua fu chan ke za zhi 50:757–761

    PubMed  Google Scholar 

  36. Amit A, Sabo E, Movsas A, Efrat-Tamam Y, Reiss A, Matanes E et al (2019) Can morphometric analysis of the fallopian tube fimbria predict the presence of uterine papillary serous carcinoma (UPSC)? PLoS ONE 14:e0211329. https://doi.org/10.1371/journal.pone.0211329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ono K, Hayashi H, Tateno M, Tanaka R, Suzuki R, Maruyama Y et al (2014) Uterine superficial serous carcinomas and extensive serous endometrial intraepithelial carcinomas: clinicopathological analysis of 6 patients. Int J Clin Exp Pathol 7:7979–7988

    PubMed  PubMed Central  Google Scholar 

  38. Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A et al (2016) The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 48(8):848–55. https://doi.org/10.1038/ng.3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haesen D, Abbasi Asbagh L, Derua R, Hubert A, Schrauwen S, Hoorne Y et al (2016) Recurrent PPP2R1A mutations in uterine cancer act through a dominant-negative mechanism to promote malignant cell growth. Cancer Res 76:5719–5731. https://doi.org/10.1158/0008-5472.CAN-15-3342

    Article  CAS  PubMed  Google Scholar 

  40. Taylor SE, O’Connor CM, Wang Z, Shen G, Song H, Leonard D et al (2019) The highly recurrent PP2A Aα-Subunit mutation P179R alters protein structure and impairs PP2A enzyme function to promote endometrial tumorigenesis. Cancer Res 79(16):4242–4257. https://doi.org/10.1158/0008-5472.CAN-19-0218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Connor CM, Taylor SE, Miller KM, Hurst L, Haanen TJ, Suhan TK, Zawacki KP, Noto FK, Trako J, Mohan A, Sangodkar J, Zamarin D, DiFeo A, Narla G (2022) Targeting ribonucleotide reductase induces synthetic lethality in PP2A-deficient uterine serous carcinoma. Cancer Res 82(4):721–733. https://doi.org/10.1158/0008-5472.CAN-21-1987

    Article  PubMed  PubMed Central  Google Scholar 

  42. Le Gallo M, O’Hara AJ, Rudd ML, Urick ME, Hansen NF, O’Neil NJ et al (2012) Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet 44:1310–1315. https://doi.org/10.1038/ng.2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E et al (2013) Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci USA 110:2916–2921. https://doi.org/10.1073/pnas.1222577110

    Article  PubMed  PubMed Central  Google Scholar 

  44. Le Gallo M, Rudd ML, Urick ME, Hansen NF, National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program, Merino MJ et al (2018) The FOXA2 transcription factor is frequently somatically mutated in uterine carcinosarcomas and carcinomas. Cancer 124:65–73. https://doi.org/10.1002/cncr.30971

    Article  CAS  PubMed  Google Scholar 

  45. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73. https://doi.org/10.1038/nature12113

    Article  CAS  Google Scholar 

  46. Chen W, Husain A, Nelson GS, Rambau PF, Liu S, Lee CH et al (2017) Immunohistochemical profiling of endometrial serous carcinoma. Int J Gynecol Pathol 36:128–39. https://doi.org/10.1097/PGP.0000000000000291

    Article  CAS  PubMed  Google Scholar 

  47. Edmondson RJ, Crosbie EJ, Nickkho-Amiry M, Kaufmann A, Stelloo E, Nijman HW et al (2017) Markers of the p53 pathway further refine molecular profiling in high-risk endometrial cancer: a transPORTEC initiative. Gynecol Oncol 146:327–333. https://doi.org/10.1016/j.ygyno.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  48. Mahdi H, Xiu J, Reddy SK, DeBernardo R (2015) Alteration in PI3K/mTOR, MAPK pathways and Her2 expression/amplification is more frequent in uterine serous carcinoma than ovarian serous carcinoma. J Surg Oncol 112:188–194. https://doi.org/10.1002/jso.23993

    Article  CAS  PubMed  Google Scholar 

  49. Attias-Geva Z, Bentov I, Kidron D, Amichay K, Sarfstein R, Fishman A et al (2012) p53 regulates insulin-like growth factor-I receptor gene expression in uterine serous carcinoma and predicts responsiveness to an insulin-like growth factor-I receptor-directed targeted therapy. Eur J Cancer 48:1570–1580. https://doi.org/10.1016/j.ejca.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  50. Jones NL, Xiu J, Chatterjee-Paer S, Buckley de Meritens A, Burke WM, Tergas AI et al (2017) Distinct molecular landscapes between endometrioid and nonendometrioid uterine carcinomas. Int J Cancer 140:1396–1404. https://doi.org/10.1002/ijc.30537

    Article  CAS  PubMed  Google Scholar 

  51. Groeneweg JW, Hernandez SF, Byron VF, DiGloria CM, Lopez H, Scialabba V et al (2014) Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts. Clin Cancer Res 20:6517–6528. https://doi.org/10.1158/1078-0432.CCR-14-1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jones NL, Xiu J, Reddy SK, Burke WM, Tergas AI, Wright JD et al (2015) Identification of potential therapeutic targets by molecular profiling of 628 cases of uterine serous carcinoma. Gynecol Oncol 138:620–626. https://doi.org/10.1016/j.ygyno.2015.06.034

    Article  CAS  PubMed  Google Scholar 

  53. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48:812–830e14. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bellone S, Centritto F, Black J, Schwab C, English D, Cocco E et al (2015) Polymerase ε (POLE) ultra-mutated tumors induce robust tumor-specific CD4+T cell responses in endometrial cancer patients. Gynecol Oncol 138:11–17. https://doi.org/10.1016/j.ygyno.2015.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kucukgoz Gulec U, Kilic Bagir E, Paydas S, Guzel AB, Gumurdulu D, Vardar MA (2019) Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) expressions in type 2 endometrial cancer. Arch Gynecol Obstet 300:377–382. https://doi.org/10.1007/s00404-019-05180-2

    Article  CAS  PubMed  Google Scholar 

  56. Herzog TJ, Arguello D, Reddy SK, Gatalica Z (2015) PD-1, PD-L1 expression in 1599 gynecological cancers: implications. for immunotherapy Gynecologic Oncology April 137(1):204–205. https://doi.org/10.1016/j.ygyno.2015.01.514

    Article  Google Scholar 

  57. Talhouk A, Derocher H, Schmidt P, Leung S, Milne K, Gilks CB et al (2019) Molecular subtype not immune response drives outcomes in endometrial carcinoma. Clin Cancer Res 25:2537–2548. https://doi.org/10.1158/1078-0432.CCR-18-3241

    Article  CAS  PubMed  Google Scholar 

  58. Zhong H, Chen H, Qiu H, Huang C, Wu Z (2020) A multiomics comparison between endometrial cancer and serous ovarian cancer. PeerJ 8:e8347. https://doi.org/10.7717/peerj.8347

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L et al (2020) Proteogenomic characterization of endometrial carcinoma. Cell 180:729–748e26. https://doi.org/10.1016/j.cell.2020.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuzaki S, Klar M, Matsuzaki S, Roman LD, Sood AK, Matsuo K (2021) Uterine carcinosarcoma: contemporary clinical summary, molecular updates, and future research opportunity. Gynecol Oncol 160(2):586–601. https://doi.org/10.1016/j.ygyno.2020.10.043

    Article  CAS  PubMed  Google Scholar 

  61. Durieux E, Franceschi T, Morel AP, de Saint Hilaire P, Ray-Coquard I, Puisieux A, Devouassoux-Shisheboran M (2019) Role of epithelial-mesenchymal transition factors in the histogenesis of uterine carcinomas. Virchows Arch 475(1):85–94. https://doi.org/10.1007/s00428-019-02532-w

    Article  CAS  PubMed  Google Scholar 

  62. Zhao S, Bellone S, Lopez S, Thakral D, Schwab C, English DP, Black J, Cocco E, Choi J, Zammataro L, Predolini F, Bonazzoli E, Bi M, Buza N, Hui P, Wong S, Abu-Khalaf M, Ravaggi A, Bignotti E, Bandiera E, Romani C, Todeschini P, Tassi R, Zanotti L, Odicino F, Pecorelli S, Donzelli C, Ardighieri L, Facchetti F, Falchetti M, Silasi DA, Ratner E, Azodi M, Schwartz PE, Mane S, Angioli R, Terranova C, Quick CM, Edraki B, Bilgüvar K, Lee M, Choi M, Stiegler AL, Boggon TJ, Schlessinger J, Lifton RP, Santin AD (2016) Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci USA 113(43):12238–12243. https://doi.org/10.1073/pnas.1614120113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin Y, Zhou J, Cheng Y, Zhao L, Yang Y, Wang J (2017) Comparison of survival benefits of combined chemotherapy and radiotherapy versus chemotherapy alone for uterine serous carcinoma: a meta-analysis. Int J Gynecol Cancer 27:93–101. https://doi.org/10.1097/IGC.0000000000000856

    Article  PubMed  Google Scholar 

  64. Menderes G, Lopez S, Han C, Altwerger G, Gysler S, Varughese J et al (2018) Mechanisms of resistance to HER2-targeted therapies in HER2-amplified uterine serous carcinoma, and strategies to overcome it. Discov Med 26:39–50

    PubMed  Google Scholar 

  65. Urick ME, Bell DW (2019) Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer 19:510–521. https://doi.org/10.1038/s41568-019-0177-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carvajal-Hausdorf DE, Schalper KA, Bai Y, Black J, Santin AD, Rimm DL (2017) Objective, domain-specific HER2 measurement in uterine and ovarian serous carcinomas and its clinical significance. Gynecol Oncol 145:154–158. https://doi.org/10.1016/j.ygyno.2017.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Black J, Menderes G, Bellone S, Schwab CL, Bonazzoli E, Ferrari F et al (2016) SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows antitumor activity in uterine serous carcinoma with HER2/Neu expression. Mol Cancer Ther 15:1900–1909. https://doi.org/10.1158/1535-7163.MCT-16-0163

    Article  CAS  PubMed  Google Scholar 

  68. Schwab CL, English DP, Roque DM, Bellone S, Lopez S, Cocco E et al (2014) Neratinib shows efficacy in the treatment of HER2/neu amplified uterine serous carcinoma in vitro and in vivo. Gynecol Oncol 135:142–148. https://doi.org/10.1016/j.ygyno.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  69. Fang Z, Wang J, Clark LH, Sun W, Yin Y, Kong W et al (2018) ONC201 demonstrates anti-tumorigenic and anti-metastatic activity in uterine serous carcinoma in vitro. Am J Cancer Res 8:1551–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Urick ME, Bell DW (2018) In vitro effects of FBXW7 mutation in serous endometrial cancer: increased levels of potentially druggable proteins and sensitivity to SI-2 and dinaciclib. Mol Carcinog 57:1445–1457. https://doi.org/10.1002/mc.22867SI-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonazzoli E, Predolini F, Cocco E, Bellone S, Altwerger G, Menderes G et al (2018) Inhibition of BET bromodomain proteins with GS-5829 and GS-626510 in uterine serous carcinoma, a biologically aggressive variant of endometrial cancer. Clin Cancer Res 24:4845–4853. https://doi.org/10.1158/1078-0432.CCR-18-0864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seino M, Ohta T, Sugiyama A, Sakaki H, Sudo T, Tsutsumi S et al (2018) Metabolomic analysis of uterine serous carcinoma with acquired resistance to paclitaxel. Oncotarget 9:31985–31998. https://doi.org/10.18632/oncotarget.25868

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zeng X, Baba T, Hamanishi J, Matsumura N, Kharma B, Mise Y et al (2019) Phosphorylation of STAT1 serine 727 enhances platinum resistance in uterine serous carcinoma. Int J Cancer 145:1635–1647. https://doi.org/10.1002/ijc.32501

    Article  CAS  PubMed  Google Scholar 

  74. Roque DM, Bellone S, English DP, Buza N, Cocco E, Gasparrini S et al (2013) Tubulin-β-III overexpression by uterine serous carcinomas is a marker for poor overall survival after platinum/taxane chemotherapy and sensitivity to epothilones. Cancer 119:2582–2592. https://doi.org/10.1002/cncr.28017

    Article  CAS  PubMed  Google Scholar 

  75. Dudley JC, Lin MT, Le DT, Eshleman JR (2016) Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 22:813–820. https://doi.org/10.1158/1078-0432.CCR-15-1678

    Article  CAS  PubMed  Google Scholar 

  76. Pakish JB, Zhang Q, Chen Z, Liang H, Chisholm GB, Yuan Y et al (2017) Immune microenvironment in microsatellite-instable endometrial cancers: hereditary or sporadic origin matters. Clin Cancer Res 23:4473–4481. https://doi.org/10.1158/1078-0432.CCR-16-2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mullen MM, Mutch DG (2019) Endometrial tumor immune response: predictive biomarker of response to immunotherapy. Clin Cancer Res 25:2366–2368. https://doi.org/10.1158/1078-0432.CCR-18-4122

    Article  CAS  PubMed  Google Scholar 

  78. Vanderstraeten A, Luyten C, Verbist G, Tuyaerts S, Amant F (2014) Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunol Immunother 63:545–557. https://doi.org/10.1007/s00262-014-1537-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu HC, Davila Gonzalez D, Viswanath DI, Vander Pol RS, Saunders SZ, Di Trani N, Xu Y, Zheng J, Chen SH, Chua CYX, Grattoni A (2023) Sustained intratumoral administration of agonist CD40 antibody overcomes immunosuppressive tumor microenvironment in pancreatic cancer. Adv Sci (Weinh). https://doi.org/10.1002/advs.202206873

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yang F, He Z, Duan H, Zhang D, Li J, Yang H, Dorsey JF, Zou W, Nabavizadeh SA, Bagley SJ, Abdullah K, Brem S, Zhang L, Xu X, Byrne KT, Vonderheide RH, Gong Y, Synergistic Fan Y (2021) Immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat Commun 12(1):3424. https://doi.org/10.1038/s41467-021-23832-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HM, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB (2016) The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 48(8):848–855. https://doi.org/10.1038/ng.3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Erickson BK, Najjar O, Damast S, Blakaj A, Tymon-Rosario J, Shahi M et al (2020) Human epidermal growth factor 2 (HER2) in early stage uterine serous carcinoma: a multi-institutional cohort study. Gynecol Oncol 159:17–22. https://doi.org/10.1016/j.ygyno.2020.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Piccart M, Procter M, Fumagalli D, de Azambuja E, Clark E, Ewer MS et al (2021) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years follow-Up. J Clin Oncol 39:1448–1457. https://doi.org/10.1200/JCO.20.01204

    Article  CAS  PubMed  Google Scholar 

  84. Tymon-Rosario JR, Gorman M, Santin AD (2022) Targeted therapies in the treatment of uterine serous carcinoma. Curr Treat Options Oncol 23(12):1804–1817

    Article  PubMed  Google Scholar 

  85. Oaknin A, Gilbert L, Tinker AV, Brown J, Mathews C, Press J, Sabatier R, O’Malley DM, Samouelian V, Boni V, Duska L, Ghamande S, Ghatage P, Kristeleit R, Leath C III, Guo W, Im E, Zildjian S, Han X, Duan T, Veneris J, Pothuri B (2022) Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET-a phase I, single-arm study. J Immunother Cancer 10(1):e003777. https://doi.org/10.1136/jitc-2021-003777

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mirza MR, Chase DM, Slomovitz BM, dePont Christensen R, Novák Z, Black D, Gilbert L, Sharma S, Valabrega G, Landrum LM, Hanker LC, Stuckey A, Boere I, Gold MA, Auranen A, Pothuri B, Cibula D, McCourt C, Raspagliesi F, Shahin MS, Gill SE, Monk BJ, Buscema J, Herzog TJ, Copeland LJ, Tian M, He Z, Stevens S, Zografos E, Coleman RL, Powell MA, RUBY investigators (2023) Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa2216334

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant no. 82173119, and, 82072861), and Fostering Young Scholars of Peking University Health Science Center (Grant no. BMU2022PY002).

Author information

Authors and Affiliations

Authors

Contributions

BS: Data curation, writing—original draft. ZN: Writing—original draft, writing—review & editing. CY and WJ: Supervision, writing—review & editing.

Corresponding authors

Correspondence to Yuan Cheng or Jianliu Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest involved in this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Zhao, N., Cheng, Y. et al. A review of basic to clinical targeted therapy and immunotherapy in uterine serous cancer. Mol Biol Rep 50, 6901–6912 (2023). https://doi.org/10.1007/s11033-023-08580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08580-5

Keywords

Navigation