Skip to main content

Advertisement

Log in

Evaluation of the expression levels of lncRNAs H19 and MEG3 in patients with type 2 diabetes mellitus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

LncRNAs may play a role in either suppressing or exacerbating diabetes-associated vascular complications.

Aims

This study aimed to assess MEG3 and H19 expression levels in T2DM and pre-diabetes and their roles in diabetes-related microvascular complications.

Subject and Methods

(RT-PCR) analysis of the MEG3 and H19 plasma levels was carried out in 180 participants of T2DM, pre-diabetes, and control.

Results

The expression level of lncRNA H19 was significantly down-regulated and lncRNA MEG3 up-regulated in T2DM compared to pre-diabetes and control, also for pre-diabetes versus control. The (ROC) analysis of MEG3 and H19 relative expression levels showed that MEG3 has better sensitivity for distinguishing T2DM from pre-diabetes and control groups.In comparison, H19 offered superior sensitivity to distinguish pre-diabetic from controls. Additionally, H19 was reported as an independent risk factor for T2DM by multivariate analysis. Low expression of H19 and over-expressed MEG3 were significantly associated with retinopathy, nephropathy, and elevated renal indicators (urea, creatinine, and UACR.

Conclusion

Our results implicated the potential diagnostic and predictive roles of lncRNA MEG3 and H19 for T2DM and related microvascular complications. Additionally, H19 may serve as a potential biomarker for pre-diabetes prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All the original data are available for further inquiries.

References

  1. Hatting M, Tavares CDJ, Sharabi K et al (2018) Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 1411:21. https://doi.org/10.1111/NYAS.13435

    Article  CAS  PubMed  Google Scholar 

  2. Çalışkan Z, Mutlu T, Güven M et al (2018) SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus. Gene 642:542–548. https://doi.org/10.1016/J.GENE.2017.11.071

    Article  PubMed  Google Scholar 

  3. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 41:S13–S27. https://doi.org/10.2337/DC18-S002

  4. Dunlay SM, Givertz MM, Aguilar D et al (2019) Type 2 diabetes Mellitus and Heart failure, A Scientific Statement from the American Heart Association and Heart failure society of America. J Card Fail 25:584–619. https://doi.org/10.1016/J.CARDFAIL.2019.05.007

    Article  PubMed  Google Scholar 

  5. Dieter C, Lemos NE, de Corrêa NR et al (2021) F, The Impact of lncRNAs in Diabetes Mellitus: A Systematic Review and In Silico Analyses. Front Endocrinol (Lausanne) 12:. https://doi.org/10.3389/FENDO.2021.602597/FULL

  6. Chen Y, Li Z, Chen X, Zhang S (2021) Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B 11:340–354. https://doi.org/10.1016/J.APSB.2020.10.001

    Article  CAS  PubMed  Google Scholar 

  7. Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA et al (2021) Role of long non-coding RNAs and the Molecular Mechanisms involved in insulin resistance. Int J Mol Sci 2021 22:7256. https://doi.org/10.3390/IJMS22147256

    Article  CAS  Google Scholar 

  8. Cremer S, Michalik KM, Fischer A et al (2019) Hematopoietic Deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139:1320–1334. https://doi.org/10.1161/CIRCULATIONAHA.117.029015

    Article  CAS  PubMed  Google Scholar 

  9. Ghaedi H, Zare A, Omrani MD et al (2018) Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes in an iranian population. Gene 675:265–271. https://doi.org/10.1016/J.GENE.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  10. Zhuo C, Jiang R, Lin X, Shao M (2017) LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8:1429–1437. https://doi.org/10.18632/ONCOTARGET.13637

    Article  PubMed  Google Scholar 

  11. Committee ADAPP (2022) 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 45:S17–S38. https://doi.org/10.2337/DC22-S002

    Article  Google Scholar 

  12. National Kidney Foundation K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification - PubMed. In (2002) : https://pubmed.ncbi.nlm.nih.gov/11904577/. Accessed 1 Sep 2020

  13. Group ETDRSR (1991) Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An extension of the modified Airlie House classification: ETDRS Report Number 10. Ophthalmology 98:786–806. https://doi.org/10.1016/S0161-6420(13)38012-9

    Article  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Article  CAS  PubMed  Google Scholar 

  15. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. https://doi.org/10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  16. Saleh AA, Kasem HE, Zahran ES, El-Hefnawy SM (2020) Cell-free long non-coding RNAs (LY86-AS1 & HCG27_201and GAS5) as biomarkers for pre-diabetes and type 2 DM in Egypt. Biochem Biophys Rep 23. https://doi.org/10.1016/J.BBREP.2020.100770

  17. Leung A, Natarajan R (2018) Long noncoding RNAs in Diabetes and Diabetic Complications. Antioxid Redox Signal 29:1064. https://doi.org/10.1089/ARS.2017.7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Assmann TS, Milagro FI, Martínez JA (2019) Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases. Mol Med Rep 20:3543–3554. https://doi.org/10.3892/MMR.2019.10595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40:6391. https://doi.org/10.1093/NAR/GKS296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alfaifi M, Verma AK, Alshahrani MY et al (2020) Assessment of Cell-Free Long non-coding RNA-H19 and miRNA-29a, miRNA-29b expression and severity of diabetes. Diabetes Metab Syndr Obes 13:3727. https://doi.org/10.2147/DMSO.S273586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao M, Wang H, Chen J et al (2021) Expression of long non-coding RNA H19 in colorectal cancer patients with type 2 diabetes. Arch Physiol Biochem 127:228–234. https://doi.org/10.1080/13813455.2019.1628068

    Article  CAS  PubMed  Google Scholar 

  22. Goyal N, Tiwary S, Kesharwani D, Datta M (2019) Long non-coding RNA H19 inhibition promotes hyperglycemia in mice by upregulating hepatic FoxO1 levels and promoting gluconeogenesis. J Mol Med (Berl) 97:115–126. https://doi.org/10.1007/S00109-018-1718-6

    Article  CAS  PubMed  Google Scholar 

  23. Thomas A, Fei L, Chakrabarti S (2017) H19 regulates Glucose-Induced EndMT in Chronic Diabetic Complications. Can J Diabetes 41:S9. https://doi.org/10.1016/j.jcjd.2017.08.029

    Article  Google Scholar 

  24. Thomas AA, Biswas S, Feng B et al (2019) lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 62:517–530. https://doi.org/10.1007/S00125-018-4797-6

    Article  CAS  PubMed  Google Scholar 

  25. Saleh AA, El-Hefnawy SM, Kasemy ZA et al (2022) Mi-RNA-93 and Mi-RNA-152 in the diagnosis of type 2 diabetes and Diabetic Retinopathy. Br J Biomed Sci 79. https://doi.org/10.3389/BJBS.2021.10192

  26. Zhu L, Li Y, Xia F et al (2022) H19: a vital long noncoding RNA in the treatment of Diabetes and Diabetic Complications. Curr Pharm Des 28:1011–1018. https://doi.org/10.2174/1381612827666211210123959

    Article  CAS  PubMed  Google Scholar 

  27. Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM (2020) Circulating long noncoding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: a preliminary study. Bosn J Basic Med Sci 20:365. https://doi.org/10.17305/BJBMS.2019.4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi S, Song L, Yu H et al (2020) Knockdown of LncRNA-H19 ameliorates kidney fibrosis in Diabetic mice by suppressing miR-29a-Mediated EndMT. https://doi.org/10.3389/FPHAR.2020.586895. Front Pharmacol 11:

  29. Hernández-Aguilar AI, Luciano-Villa CA, Tello-Flores VA et al (2021) Dysregulation of lncRNA-H19 in cardiometabolic diseases and the molecular mechanism involved: a systematic review. Expert Rev Mol Diagn 21:809–821. https://doi.org/10.1080/14737159.2021.1944808

    Article  CAS  PubMed  Google Scholar 

  30. Han Y, Ma J, Wang J, Wang L (2018) Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 93:107–114. https://doi.org/10.1016/J.MOLIMM.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  31. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M (2018) Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics 12. https://doi.org/10.1186/S40246-018-0173-3

  32. Luo Q, Xia X, Luo Q et al (2022) Long noncoding RNA MEG3-205/Let-7a/MyD88 Axis promotes renal inflammation and fibrosis in Diabetic Nephropathy. Kidney Dis (Basel) 8:231–245. https://doi.org/10.1159/000523847

    Article  PubMed  Google Scholar 

  33. Pradas-Juni M, Hansmeier NR, Link JC et al (2020) A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nature Communications 2020 11:1 11:1–17. https://doi.org/10.1038/s41467-020-14323-y

  34. Zhu X, Wu YB, Zhou J, Kang DM (2016) Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun 469:319–325. https://doi.org/10.1016/J.BBRC.2015.11.048

    Article  CAS  PubMed  Google Scholar 

  35. Ye HH, Yang SH, Zhang Y (2018) MEG3 damages fetal endothelial function induced by gestational diabetes mellitus via AKT pathway. Eur Rev Med Pharmacol Sci 22:8553–8560. https://doi.org/10.26355/EURREV_201812_16617

    Article  PubMed  Google Scholar 

  36. Chang W, wei, Zhang L, Yao X, ming et al (2020) Upregulation of long non-coding RNA MEG3 in type 2 diabetes mellitus complicated with vascular disease: a case-control study. Mol Cell Biochem 473:93–99. https://doi.org/10.1007/S11010-020-03810-X

    Article  CAS  PubMed  Google Scholar 

  37. Biswas S, Coyle A, Chen S et al (2022) Expressions of serum lncRNAs in Diabetic retinopathy – a potential Diagnostic Tool. Front Endocrinol (Lausanne) 13. https://doi.org/10.3389/FENDO.2022.851967/FULL

  38. Deng Q, Wen R, Liu S et al (2020) Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission. Cell Death Dis 11. https://doi.org/10.1038/S41419-020-03022-7

  39. Che X, Deng X, Xie K et al (2019) Long noncoding RNA MEG3 suppresses podocyte injury in diabetic nephropathy by inactivating Wnt/β-catenin signaling. PeerJ 7. https://doi.org/10.7717/PEERJ.8016

Download references

Acknowledgements

We thank all of the patients and control subjects who participated in this study.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Abeer A. Elrefai: writing the primary draft. Abeer A. Elrefai, Amany A. Saleh and Heba: selection the study design, the laboratory and genetic analysis and data interpretation. Hany Elbrbary and Khaled M Elzorkany: the precipitants interviews and data collection and statistical analysis. All author participated in writing the manuscript and approved the final version.

Corresponding author

Correspondence to Abeer A Alrefai.

Ethics declarations

Ethics Statement

This study was reviewed and approved by research ethics committee of Menoufia University Faculty of Medicine. All participants provided their written informed consent to participate in this study.

Declaration of competing interest

There is no conflict of interest among authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrefai, A.A., Khader, H.F., Elbasuony, H.A. et al. Evaluation of the expression levels of lncRNAs H19 and MEG3 in patients with type 2 diabetes mellitus. Mol Biol Rep 50, 6075–6085 (2023). https://doi.org/10.1007/s11033-023-08569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08569-0

Keywords

Navigation