Skip to main content
Log in

Inducing apoptosis by using microRNA in radio-resistant prostate cancer: an in-silico study with an in-vitro validation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

One of the problems with radiation therapy (RT) is that prostate tumor cells are often radio-resistant, which results in treatment failure. This study aimed to determine the procedure involved in radio-resistant prostate cancer apoptosis. For a deeper insight, we devoted a novel bioinformatics approach to analyze the targeting between microRNAs and radio-resistant prostate cancer genes.

Method

This study uses the Tarbase, and the Mirtarbase databases as validated experimental databases and mirDIP as a predicted database to identify microRNAs that target radio-resistant anti-apoptotic genes. These genes are used to construct the radio-resistant prostate cancer genes network using the online tool STRING. The validation of causing apoptosis by using microRNA was confirmed with flow cytometry of Annexin V.

Results

The anti-apoptotic gene of radio-resistant prostate cancer included BCL-2, MCL1, XIAP, STAT3, NOTCH1, REL, REL B, BIRC3, and AKT1 genes. These genes were identified as anti-apoptotic genes for radio-resistant prostate cancer. The crucial microRNA that knockdown all of these genes was hsa-miR-7-5p. The highest rate of apoptotic cells in a cell transfected with hsa-miR-7-5p was (32.90 ± 1.49), plenti III (21.99 ± 3.72), and the control group (5.08 ± 0.88) in 0 Gy (P < 0.001); also, this rate was in miR-7-5p (47.01 ± 2.48), plenti III (33.79 ± 3.40), and the control group (16.98 ± 3.11) (P < 0.001) for 4 Gy.

Conclusion

The use of this new treatment such as gene therapy to suppress genes involved in apoptosis can help to improve the treatment results and increase the quality of life of patients with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data for this study is available from the first author upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. Cancer J Clin 73(1):17–48

    Article  Google Scholar 

  2. Lin J, Nousome D, Jiang J, Chesnut GT, Shriver CD, Zhu K (2023) Five-year survival of patients with late-stage prostate cancer: comparison of the Military Health System and the US general population. Br J Cancer. :1–7

  3. Rawla P (2019) Epidemiology of prostate cancer. World J Oncol 10(2):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M et al (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4):618–629

    Article  PubMed  Google Scholar 

  5. Masoudi-Khoram N, Abdolmaleki P, Hosseinkhan N, Nikoofar A, Mowla SJ, Monfared H et al (2020) Differential miRNAs expression pattern of irradiated breast cancer cell lines is correlated with radiation sensitivity. Sci Rep 10(1):1–12

    Article  Google Scholar 

  6. Wallis CJ, Mahar AL, Choo R, Herschorn S, Kodama RT, Shah PS et al (2016) Second malignancies after radiotherapy for prostate cancer: systematic review and meta-analysis. BMJ. ;352

  7. Bahreyni-Toossi M-T, Dolat E, Khanbabaei H, Zafari N, Azimian H (2019) microRNAs: potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways. Mutat Research/Fundamental Mol Mech Mutagen 816:111679

    Article  Google Scholar 

  8. Liu S-h, Wang P-p, Li D, Liu Q-y, Lv L, Liu X et al (2020) MicroRNA-148b enhances the radiosensitivity of B-cell lymphoma cells by targeting Bcl-w to promote apoptosis. Int J Biol Sci 16(6):935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koukourakis M (2012) Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 85(1012):313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng M, Morgan-Lappe SE, Yang J, Bockbrader KM, Pamarthy D, Thomas D et al (2008) Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor–associated factor 2. Cancer Res 68(18):7570–7578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C (2015) The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res 183(2):196–207

    Article  CAS  PubMed  Google Scholar 

  12. Darvish L, Toossi MTB, Azimian H, Shakeri M, Dolat E, Firouzjaei AA et al (2023) The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 104:110580

    Article  CAS  PubMed  Google Scholar 

  13. Piñero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M et al (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database. ;2015

  14. Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S (2009) Integrated network analysis platform for protein-protein interactions. Nat Methods 6(1):75–77

    Article  CAS  PubMed  Google Scholar 

  15. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I et al (2015) DIANA-TarBase v7. 0: indexing more than half a million experimentally supported miRNA: mRNA interactions. Nucleic Acids Res 43(D1):D153–D9

    Article  CAS  PubMed  Google Scholar 

  16. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48(D1):D148–D54

    CAS  PubMed  Google Scholar 

  17. Tokar T, Pastrello C, Rossos AE, Abovsky M, Hauschild A-C, Tsay M et al (2018) mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res 46(D1):D360–D70

    Article  CAS  PubMed  Google Scholar 

  18. Xie B, Ding Q, Han H, Wu D (2013) miRCancer: a microRNA–cancer association database constructed by text mining on literature. Bioinformatics 29(5):638–644

    Article  CAS  PubMed  Google Scholar 

  19. Wang D, Gu J, Wang T, Ding Z (2014) OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 30(15):2237–2238

    Article  CAS  PubMed  Google Scholar 

  20. Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6(9):1001–1005

    Article  CAS  PubMed  Google Scholar 

  21. Li L-q, Huang H-l, Ping J-l, Wang X-h, Zhong J (2011) Dai L-c. Clinicopathologic and prognostic implications of progranulin in breast carcinoma. Chin Med J 124(13):2045–2050

    CAS  PubMed  Google Scholar 

  22. Edelman MJ, Feliciano J, Yue B, Bejarano P, Ioffe O, Reisman D et al (2014) GP88 (progranulin): a novel tissue and circulating biomarker for non–small cell lung carcinoma. Hum Pathol 45(9):1893–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cuevas-Antonio R, Cancino C, Arechavaleta-Velasco F, Andrade A, Barron L, Estrada I et al (2010) Expression of progranulin (Acrogranin/PCDGF/Granulin-Epithelin precursor) in benign and malignant ovarian tumors and activation of MAPK signaling in ovarian cancer cell line. Cancer Invest 28(5):452–458

    Article  CAS  PubMed  Google Scholar 

  24. Metheetrairut C, Slack FJ (2013) MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 23(1):12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao L, Bode AM, Cao Y, Dong Z (2012) Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis 33(11):2220–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boccellino M, Alaia C, Misso G, Cossu AM, Facchini G, Piscitelli R et al (2015) Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine 49:588–605

    Article  CAS  PubMed  Google Scholar 

  27. Molina-Pinelo S, Carnero A, Rivera F, Estevez-Garcia P, Bozada JM, Limon ML et al (2014) MiR-107 and miR-99a-3p predict chemotherapy response in patients with advanced colorectal cancer. BMC Cancer 14(1):1–10

    Article  Google Scholar 

  28. Teng R, Hu Y, Zhou J, Seifer B, Chen Y, Shen J et al (2015) Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part via microRNA-107. PLoS ONE 10(12):e0143716

    Article  PubMed  PubMed Central  Google Scholar 

  29. Arechavaleta-Velasco F, Perez-Juarez CE, Gerton GL, Diaz-Cueto L (2017) Progranulin and its biological effects in cancer. Med Oncol 34:1–11

    Article  CAS  Google Scholar 

  30. Morales-Martínez M, Vega MI (2022) Role of MicroRNA-7 (MiR-7) in Cancer Physiopathology. Int J Mol Sci 23(16):9091

    Article  PubMed  PubMed Central  Google Scholar 

  31. Catz S, Johnson J (2003) BCL-2 in prostate cancer: a minireview. Apoptosis 8:29–37

    Article  CAS  PubMed  Google Scholar 

  32. Reiner T, de Las Pozas A, Parrondo R, Palenzuela D, Cayuso W, Rai P et al (2015) Mcl-1 protects prostate cancer cells from cell death mediated by chemotherapy-induced DNA damage. Oncoscience 2(8):703

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu X, Zhou L, Liu W, Liu L, Gao F, Li W et al (2022) Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer. Cell Death Dis 13(3):249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trivigno D, Essmann F, Huber SM, Rudner J (2012) Deubiquitinase USP9x confers radioresistance through stabilization of Mcl-1. Neoplasia 14(10):893–IN4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang W, Qu Y, Lan L, Wu D, Xu L (2012) Novel molecular therapy targeting Mcl-1 and modulating autophagy in castration-resistant prostate cancer. Cancer Res 72(8Supplement):2260

    Article  Google Scholar 

  36. Wang X, Zhang X, Qiu C, Yang N (2020) STAT3 contributes to radioresistance in cancer. Front Oncol 10:1120

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumar S, Clair DS (2021) Radioresistance in prostate Cancer: focus on the interplay between NF-κB and SOD. Antioxidants 10(12):1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R et al (2002) Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 62(22):6659–6666

    CAS  PubMed  Google Scholar 

  39. Wang Z, Zhong M, Song Q, Pascal LE, Yang Z, Wu Z et al (2019) Anti-apoptotic factor Birc3 is up-regulated by ELL2 knockdown and stimulates proliferation in LNCaP cells. Am J Clin Experimental Urol 7(4):223

    Google Scholar 

  40. Devi GR (2004) XIAP as target for therapeutic apoptosis in prostate cancer. Drug News Perspect 17(2):127–134

    Article  CAS  PubMed  Google Scholar 

  41. Stoyanova T, Riedinger M, Lin S, Faltermeier CM, Smith BA, Zhang KX et al (2016) Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proceedings of the National Academy of Sciences. ;113(42):E6457-E66

  42. Fassl A, Tagscherer K, Richter J, Berriel Diaz M, Alcantara Llaguno S, Campos B et al (2012) Notch1 signaling promotes survival of glioblastoma cells via EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene 31(44):4698–4708

    Article  CAS  PubMed  Google Scholar 

  43. Frazzi R (2021) BIRC3 and BIRC5: multi-faceted inhibitors in cancer. Cell & Bioscience 11(1):1–14

    Article  Google Scholar 

  44. Li H-F, Kim J-S, Waldman T (2009) Radiation-induced akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol 4(1):1–10

    Article  CAS  Google Scholar 

  45. Xu Z, Zhang Y, Ding J, Hu W, Tan C, Wang M et al (2018) Mir-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells. Mol Therapy-Nucleic Acids 13:64–77

    Article  CAS  Google Scholar 

  46. Mao A, Liu Y, Wang Y, Zhao Q, Zhou X, Sun C et al (2016) miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells. Tumor Biology 37:4831–4840

    Article  CAS  PubMed  Google Scholar 

  47. Lo H-C, Hsu J-H, Lai L-C, Tsai M-H, Chuang EY (2020) MicroRNA-107 enhances radiosensitivity by suppressing granulin in PC-3 prostate cancer cells. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  48. He Z, Shen F, Qi P, Zhai Z, Wang Z (2021) Mir-541-3p enhances the radiosensitivity of prostate cancer cells by inhibiting HSP27 expression and downregulating β-catenin. Cell Death Discovery 7(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sajjad Parvin from the University of Bremen for converting the article to the native english.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Azimian.

Ethics declarations

Conflict of interest

The authors affirm that there is no conflict of interest.

Ethics approval

This article does not encompass any studies with human participants or animals performed by any of the authors. This study was implemented by Mashhad University of Medical Sciences. The ethical code for this in vitro study was IR.MUMS.MEDICAL.REC.1400.468.

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvish, L., Bahreyni-Toossi, MT., Aghaee-Bakhtiari, S.H. et al. Inducing apoptosis by using microRNA in radio-resistant prostate cancer: an in-silico study with an in-vitro validation. Mol Biol Rep 50, 6063–6074 (2023). https://doi.org/10.1007/s11033-023-08545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08545-8

Keywords

Navigation