Skip to main content

Advertisement

Log in

Inhibiting eukaryotic initiation factor 5A (eIF5A) hypusination attenuated activation of the SIK2 (salt-inducible kinase 2)-p4E-BP1 pathway involved in ovarian cancer cell proliferation and migration

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Eukaryotic initiation factor 5A hypusine (eIF5AHyp) stimulates the translation of proline repeat motifs. Salt inducible kinase 2 (SIK2) containing a proline repeat motif is overexpressed in ovarian cancers, in which it promotes cell proliferation, migration, and invasion.

Methods and results

Western blotting and dual luciferase analyses showed that depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA downregulated SIK2 level and decreased luciferase activity in cells transfected with a luciferase-based reporter construct containing consecutive proline residues, whereas the activity of the mutant control reporter construct (replacing P825L, P828H, and P831Q) did not change. According to the MTT assay, GC7, which has a potential antiproliferative effect, reduced the viability of several ovarian cancer cell lines by 20–35% at high concentrations (ES2 > CAOV-3 > OVCAR-3 > TOV-112D) but not at low concentrations. In a pull-down assay, we identified eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP1 (p4E-BP1) phosphorylated at Ser 65 as downstream binding partners of SIK2, and we validated that the level of p4E-BP1(Ser 65) was downregulated by SIK2-targeting siRNA. Conversely, in ES2 cells overexpressing SIK2, the p4E-BP1(Ser 65) level was increased but decreased in the presence of GC7 or eIF5A-targeting siRNA. Finally, the migration, clonogenicity, and viability of ES2 ovarian cancer cells were reduced by GC7 treatment as well as by siRNA for eIF5A gene silencing and siRNA for SIK2 and 4E-BP1 gene silencing. Conversely, those activities were increased in cells overexpressing SIK2 or 4E-BP1 and decreased again in the presence of GC7.

Conclusion

The depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA attenuated activation of the SIK2-p4EBP1 pathway. In that way, eIF5AHyp depletion reduces the migration, clonogenicity, and viability of ES2 ovarian cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Gentz PM, Blatch GL, Dorrington RA (2009) Dimerization of the yeast eukaryotic translation initiation factor 5A requires hypusine and is RNA dependent. FEBS J 276(3):695–706

    Article  CAS  PubMed  Google Scholar 

  2. Joe YA, Wolff EC, Park MH (1995) Cloning and expression of human deoxyhypusine synthase cDNA: structure-function studies with the recombinant enzyme and mutant proteins. J Biol Chem 270:22386–22392

    Article  CAS  PubMed  Google Scholar 

  3. Park JH, Aravind L, Wolff EC, Kaevel J, Kim YS, Park MH (2006) Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. PNAS 103:51–56

    Article  CAS  PubMed  Google Scholar 

  4. Shi XP, Yin KC, Ahem J, Davis LJ, Stern AM, Waxman L (1996) Effects of N 1-guanyl-1,7-diaminoheptane, an inhibitor of deoxyhypusine synthase, on the growth of tumorigenic cell lines in culture. Biochem Biophys Acta 1310:119–126

    Article  PubMed  Google Scholar 

  5. Liu Y, Liu R, Fu P, Du F, Hong Y, Yao M, Zhang X, Zheng S (2015) N1-Guanyl-1,7-diaminoheptane sensitizes estrogen receptor negative breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation. Cell Physiol Biochem 36:2494–2503

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Jiang J, Qin T, Xiao Y, Han L (2019) EIF5A regulates proliferation and chemoresistance in pancreatic cancer through the sHH signalling pathway. J Cell Mol Med 23:2678–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuller AP, Wu Colin C-C, Dever TE, Buskirk A, Green R (2017) eIF5A functions globally in translation elongation and termination. Mol Cell 66:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE (2013) eIF5A promotes translation of polyproline motifs. Mol Cell 51(1):35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pelechano V, Alepuz P (2017) eIF5A facilitates translation termination globally and promotes the elongation of many non-polyproline-specific tripeptide sequences. Nucleic Acids Res 45:7326–7338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bright NJ, Thornton C, Carling D (2009) The regulation and function of mammalian AMPK-related kinases. Acta Physiol 196(1):15–26

    Article  CAS  Google Scholar 

  12. Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004) Salt-inducible kinase (SIK) isoforms: Their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol 217:109–112

    Article  CAS  PubMed  Google Scholar 

  13. Raab M, Rak M, Tesch R, Gasimli K, Becker S, Knapp S, Strebhardt K, Sanhaji M (2021) The small-molecule inhibitor MRIA9 reveals novel insights into the cell cycle roles of SIK2 in ovarian cancer cells. Cancers 13(15):3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L et al (2010) SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18:109–121

    Article  CAS  PubMed  Google Scholar 

  15. Sun Z, Jiang Q, Li J, Guo J (2020) The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 5(150):1–15

    Google Scholar 

  16. Al-Hakim AK, Göransson O, Deak M, Toth R, Campbell DG et al (2005) 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci 118(23):5661–5673

    Article  CAS  PubMed  Google Scholar 

  17. Musa J, Orth MF, Dallmayer M, Baldauf M, Pardo C, Rotblat B, Kirchner T, Leprivier G, Grünewald TGP (2016) Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 35:4675–4688

    Article  CAS  PubMed  Google Scholar 

  18. Freire ER, Sturm NR, Campbell DA, de Melo Neto OP (2018) The role of cytoplasmic mRNA cap-binding protein complexes in Trypanosoma brucei and other Trypanosomatids. Pathogens 55:1–25

    Google Scholar 

  19. Pons B, Peg V, Vazquez-Sanchez MA, Lopez-Vicente L, Argelaguet E, Coch L, Martinez A, Hernandez-Losa J, Armengol G, Cajal SR (2011) The effect of p-4E-BP1 and p-eIF4E on cell proliferation in a breast cancer model. Int J Oncol 39:1337–1345

    CAS  PubMed  Google Scholar 

  20. Qin X, Jiang B, Zhang Y (2016) 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 15(6):781–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miao Y, Chen L, Shi C, Fan R, Chen P, Liu H, Xia A, Qian H (2017) Increased phosphorylation of 4E-binding protein 1 predicts poor prognosis for patients with colorectal cancer. Mol Med Rep 15:3099–3104

    Article  CAS  PubMed  Google Scholar 

  22. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan K-L (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18(13):1533–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shang ZF, Yu L, Li B, Tu WZ, Wang Y et al (2012) 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle 11(18):3463–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee GK, Kim CW, Cho IH, Kim HY, Park JH (2023) Eukaryotic initiation factor 5A hypusine as a negative regulator of adenosine 2B receptor (A2bAR) through interaction with stem loop sequences within the A2bAR 3′-untranslated region. Mol Biol Rep. https://doi.org/10.1007/s11033-023-08252-4

    Article  PubMed  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 2:2315–2319

    Article  Google Scholar 

  27. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  28. Mémin E, Hoque M, Jain MR, Heller DS, Li H, Cracchiolo B, Hanauske-Abel HM, Pe’ery T, Mathews MB (2014) Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res 74:552–562

    Article  PubMed  Google Scholar 

  29. Mandal A, Mandal S, Park MH (2014) Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS ONE 9:e111800

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sfakianos AP, Raven RM, Willis AE (2022) The pleiotropic roles of eIF5A in cellular life and its therapeutic in cancer. Biochem Soc Trans 50:1885–1895

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bandino A, Geerts D, Koster J, Bachmann AS (2014) Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients. Cell Oncol (Dordr) 37:387–398

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Li X, Liu X, Tian F, Zeng W, Xi X, Lin Y (2018) EIF5A1 promotes epithelial ovarian cancer proliferation and progression. Biomed Pharmacother 100:168–175

    Article  CAS  PubMed  Google Scholar 

  33. Xu G, Yu H, Shi X, Sun L, Zhou Q, Zheng D, Shi H, Li N, Zhang X, Shao G (2014) Cisplatin sensitivity is enhanced in non-small cell lung cancer cells by regulating epithelial mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2. BMC Pulm Med 14:174. https://doi.org/10.1186/1471-2466-14-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aziz SM, Worthen DR, Yatin MY, Ain KB, Crooke PA (1998) A Unique Interaction between polyamine and multidrug resistance (P-glycoprotein) transporters in cultured Chinese hamster ovary cells transfected with mouse mdr-1 gene. Biochem Pharmacol 56:181–187

    Article  CAS  PubMed  Google Scholar 

  35. Roh MS, Lee JH, Kang WK, Nam HY, Jung SB, Kim K, Lee EH, Park MI, Kim MS, Lee HW (2015) Phosphorylated 4E-binding protein 1 expression is associated with poor prognosis in small-cell lung cancer. Virchows Arch 467(6):667–673

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Feng X, Molinolo AA, Martin D, Vitale-Cross L, Nohata N, Ando M, Wahba A, Amornphimoltham P, Wu X, Gilardi M, Allevato M, Wu V, Steffen DJ, Tofilon P, Sonenberg N, Califano J, Chen Q, Lippman SM, Gutkind JS (2019) 4E-BP1 is a tumor suppressor protein reactivated by mTOR inhibition in head and neck cancer. Cancer Res 79:1438–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen F, Chen L, Qin Q, Sun X (2019) Salt-inducible kinase 2: an oncogenic signal transmitter and potential target for cancer therapy. Front Oncol. https://doi.org/10.3389/fonc.2019.00018

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fujimura K, Choi S, Wyse M, Strnadel J, Wright T, Klemke R (2015) Eukaryotic translation initiation factor 5A (EIF5A) regulates pancreatic cancer metastasis by modulating RhoA and Rho-associated kinase (ROCK) protein expression levels. J Biol Chem 290:29907–29919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu RR, Lv YS, Tang YX, Wang YF, Chen XL, Zheng XX, Xie SZ, Cai Y, Yu J, Zhang XZ (2014) Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species. Oncotarget. https://doi.org/10.18632/oncotarget.8324

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nathaniel J, Hiu WC (2016) Perspective on targeting salt-inducible kinase 2 (SIK2) in ovarian cancer metastasis. Transl. Cancer Res. 5(6):S1270–S1273

    Google Scholar 

  41. Shi X, Yu X, Wang J, Bian S, Li Q, Fu F, Zou X, Zhang L, Bast RC Jr, Lu Z, Guo L, Chen Y, Zhou J (2022) SIK2 promotes ovarian cancer cell motility and metastasis by phosphorylating MYLK. Mol Oncol 16:2558–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai W, Ye Q, She QB (2014) Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget 14:6015–6027

    Article  Google Scholar 

  43. Chen Y, Wang J, Fan H, Xie J, Xu L, Zhou B (2017) Phosphorylated 4E-BP1 is associated with tumor progression and adverse prognosis in colorectal cancer. Neoplasma 64:787–794

    Article  CAS  PubMed  Google Scholar 

  44. Qu Y, Zhao R, Wang H, Chang K, Yang X, Zhou X, Dai B, Zhu Y, Shi G, Zhang H, Ye D (2016) Phosphorylated 4EBP1 is associated with tumor progression and poor prognosis in Xp11.2 translocation renal cell carcinoma. Sci Rep 6:23594. https://doi.org/10.1038/srep23594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jensen N, Cheung HW (2016) Perspective on targeting salt-inducible kinase 2 (SIK2) in ovarian cancer metastasis. Transl Cancer Res 5:S1270–S1273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GC7 (N1-guanyl-1,7-diamineoheptane) was a gift from Myung Hee Park (NIH/NIDCR, Bethesda, MD).

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2058125).

Author information

Authors and Affiliations

Authors

Contributions

JHP conceived and designed the study. JHP and GKL performed the experiments and collected the data. JHP and GKL wrote the paper. JHP, GKL, and HYK analyzed the data. JHP and HYK reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Hae-Yeong Kim or Jong Hwan Park.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 613 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.K., Kim, HY. & Park, J.H. Inhibiting eukaryotic initiation factor 5A (eIF5A) hypusination attenuated activation of the SIK2 (salt-inducible kinase 2)-p4E-BP1 pathway involved in ovarian cancer cell proliferation and migration. Mol Biol Rep 50, 5807–5816 (2023). https://doi.org/10.1007/s11033-023-08510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08510-5

Keywords

Navigation