Skip to main content

Advertisement

Log in

miR-22-enriched breast cancer cells display repressed glycolytic metabolism, increased glycogen synthesis, and reduced survival in low glucose conditions

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Background

Breast cancer (BC) is the second leading cause of cancer-related mortality among women. Beyond the established tumourigenic role of genetic mutations, metabolic reprogramming is another key cancer hallmark. Glucose metabolism in particular is known to be prominently altered in tumours, in order to support biomass accumulation and cancer cell survival. The tumor suppressor microRNA (miRNA) miR-22 has been previously associated with a plethora of BC phenotypes such as growth, invasion-metastasis, and regulation of metabolic phenotypes such as lipid and folate metabolism. In this study, we aimed to investigate the role of miR-22 in the regulation of glucose metabolism in BC cells.

Methods and results

Here we examined how miR-22 affects glucose metabolism in the MCF-7 BC cells. We found that over-expression of miR-22 caused a reduced glycolytic rate in these cells. Moreover, the miRNA also rendered MCF-7 cells more sensitive to lower glucose levels. We next unbiasedly screened the transcript levels of 84 genes relevant to glucose metabolism using the Human Glucose RT2 Profiler PCR Array. Interestingly, the strongest effect identified by this screen was the upregulation of genes involved in glycogen synthesis and the repression of gene involved in glycogen catabolism. Examination of publicly available transcriptomic datasets confirmed the correlations between expression of miR-22 and these glycogen metabolism genes in BC cells.

Conclusion

This study has generated evidence for a regulatory role of miR-22 in glucose and glycogen metabolism, expanding the involvement of this miRNA in BC metabolic reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

miRNA:

microRNA

BC:

Breast cancer

miR22HG:

miR-22 host gene

References

  1. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK (2016) miRNA deregulation in Cancer cells and the Tumor Microenvironment. Cancer Discov 6:235–246. https://doi.org/10.1158/2159-8290.CD-15-0893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arnold M, Morgan E, Rumgay H et al (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. The Breast 66:15–23. https://doi.org/10.1016/j.breast.2022.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mahdavi M, Nassiri M, Kooshyar MM et al (2019) Hereditary breast cancer; genetic penetrance and current status with BRCA. J Cell Physiol 234:5741–5750. https://doi.org/10.1002/jcp.27464

    Article  CAS  PubMed  Google Scholar 

  6. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet 378:1812–1823. https://doi.org/10.1016/S0140-6736(11)61539-0

    Article  CAS  Google Scholar 

  7. Christodoulou F, Raible F, Tomer R et al (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463:1084–1088. https://doi.org/10.1038/nature08744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chou J, Kaller M, Jaeckel S et al (2022) AP4 suppresses DNA damage, chromosomal instability and senescence via inducing MDC1/Mediator of DNA damage checkpoint 1 and repressing MIR22HG/miR-22-3p. Mol Cancer 21:120. https://doi.org/10.1186/s12943-022-01581-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang D-Y, Zou X-J, Cao C-H et al (2018) Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for Hepatocellular Carcinoma. Theranostics 8:3751–3765. https://doi.org/10.7150/thno.22493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ke J, Wang Q, Zhang W et al (2022) LncRNA MIR4435-2HG promotes proliferation, migration, invasion and epithelial mesenchymal transition via targeting miR-22-3p/TMEM9B in breast cancer. Am J Transl Res 14:5441–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan T, Wang C-Q, Li X-T et al (2021) MiR-22-3p suppresses Cell Migration and Invasion by Targeting PLAGL2 in breast Cancer. J Coll Physicians Surg Pak 31:937–940. https://doi.org/10.29271/jcpsp.2021.08.937

    Article  PubMed  Google Scholar 

  12. Wang X, Yao Z, Fang L (2021) miR-22-3p/PGC1β Suppresses Breast Cancer Cell Tumorigenesis via PPARγ. PPAR Res 2021:6661828. https://doi.org/10.1155/2021/6661828

  13. Pandey DP, Picard D (2009) miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 29:3783–3790. https://doi.org/10.1128/MCB.01875-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiong J, Yu D, Wei N et al (2010) An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277:1684–1694. https://doi.org/10.1111/j.1742-4658.2010.07594.x

    Article  CAS  PubMed  Google Scholar 

  15. Kong L-M, Liao C-G, Zhang Y et al (2014) A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res 74:3764–3778. https://doi.org/10.1158/0008-5472.CAN-13-3555

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Liu X, Song S et al (2021) Identification of LIG1 and LIG3 as prognostic biomarkers in breast cancer. Open Med (Wars) 16:1705–1717. https://doi.org/10.1515/med-2021-0388

    Article  CAS  PubMed  Google Scholar 

  17. Patel JB, Appaiah HN, Burnett RM et al (2011) Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene 30:1290–1301. https://doi.org/10.1038/onc.2010.510

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  19. WARBURG O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    Article  PubMed  Google Scholar 

  20. vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin E, Koo JS (2021) Glucose metabolism and glucose transporters in breast Cancer. Front Cell Dev Biol 9:728759. https://doi.org/10.3389/fcell.2021.728759

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang L, Li J, Li Y et al (2021) Diclofenac impairs the proliferation and glucose metabolism of triple-negative breast cancer cells by targeting the c-Myc pathway. Exp Ther Med 21:584. https://doi.org/10.3892/etm.2021.10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marini C, Salani B, Massollo M et al (2013) Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12:3490–3499. https://doi.org/10.4161/cc.26461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koufaris C, Valbuena GN, Pomyen Y et al (2016) Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene 35:2766–2776. https://doi.org/10.1038/onc.2015.333

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Li H, Liu Y, Zhu Z (2018) MiR-22-3p targeting alpha-enolase 1 regulates the proliferation of retinoblastoma cells. Biomed Pharmacother 105:805–812. https://doi.org/10.1016/j.biopha.2018.06.038

    Article  CAS  PubMed  Google Scholar 

  26. Chen B, Tang H, Liu X et al (2015) miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett 356:410–417. https://doi.org/10.1016/j.canlet.2014.09.028

    Article  CAS  PubMed  Google Scholar 

  27. Song T-R, Su G-D, Chi Y-L et al (2021) Dysregulated miRNAs contribute to altered placental glucose metabolism in patients with gestational diabetes via targeting GLUT1 and HK2. Placenta 105:14–22. https://doi.org/10.1016/j.placenta.2021.01.015

    Article  CAS  PubMed  Google Scholar 

  28. Lone SN, Maqbool R, Parray FQ, Ul Hussain M (2018) Triose-phosphate isomerase is a novel target of miR-22 and miR-28, with implications in tumorigenesis. J Cell Physiol 233:8919–8929. https://doi.org/10.1002/jcp.26821

    Article  CAS  PubMed  Google Scholar 

  29. Jiang X, Hu C, Arnovitz S et al (2016) miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 7:11452. https://doi.org/10.1038/ncomms11452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garofalo M, Quintavalle C, Romano G et al (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12:27–33. https://doi.org/10.2174/156652412798376170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nejati K, Alivand MR, Arabzadeh AA (2021) MicroRNA-22 in female malignancies: focusing on breast, cervical, and ovarian cancers. Pathol Res Pract 223:153452. https://doi.org/10.1016/J.PRP.2021.153452

    Article  CAS  PubMed  Google Scholar 

  32. Rousset M, Zweibaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41:1165–1170

    CAS  PubMed  Google Scholar 

  33. Favaro E, Bensaad K, Chong MG et al (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 16:751–764. https://doi.org/10.1016/j.cmet.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  34. Zois CE, Hendriks AM, Haider S et al (2022) Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation. Cell Death Dis 13:573. https://doi.org/10.1038/s41419-022-05005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

HK, CK, and JE acknowledge support by the European Community’s Seventh Framework Programme—Health (FP7/2007–2013) project DETECTIVE (grant agreement number 266838).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Costas Koufaris, Hector C Keun; Methodology: Costas Koufaris, Margarita E Papandreou, James K Ellis, Vicky Nicolaidou, Hector C Keun; Formal analysis and investigation: Costas Koufaris; Writing - original draft preparation: Costas Koufaris, Vicky Nicolaidou; Writing - review and editing: Costas Koufaris, Margarita E Papandreou, James K Ellis, Vicky Nicolaidou, Hector C Keun; Funding acquisition: Hector C Keun; Resources: Hector C Keun; Supervision: Costas Koufaris, Hector C Keun.

Corresponding author

Correspondence to Costas Koufaris.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koufaris, C., Papandreou, M.E., Ellis, J.K. et al. miR-22-enriched breast cancer cells display repressed glycolytic metabolism, increased glycogen synthesis, and reduced survival in low glucose conditions. Mol Biol Rep 50, 5185–5193 (2023). https://doi.org/10.1007/s11033-023-08458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08458-6

Keywords

Navigation