Skip to main content
Log in

Physiological and gene expression responses involved in teak (Tectona grandis L.) seedlings exposed to osmotic and salt stressors

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Teak (Tectona grandis L.) is a forest tree having 2n = 2x = 36 diploid chromosomes. Plants are continually subjected to variety of abiotic stresses due to climate change, which alter their physiological processes and gene expression.

Methods and results

The current study sought to examine the physiological and differential gene expression of teak seedlings exposed to abiotic stresses (150 mM NaCl and 15% PEG-6000). Chlorophyll content, membrane stability index and relative water content were measured at 0, 2, 7 and 12 days after treatment. These parameters were initially numerically reduced, but they were significantly reduced during a longer period of treatment. Seedlings treated with 150 mM NaCl displayed more harmful effect on the plant than other treatments. The results showed that variety of stresses significantly affect the physiology of seedlings because they cause membrane damage, ROS generation, chlorophyll degradation, and reduction in water absorption. The gene expression of treated and control seedlings was also evaluated at 12 days after treatment. Ten stress-related genes were examined for their differential expression using RT-PCR under applied stress. The stress-treated seedlings' leaves showed an up-regulated expression of the genes MYB-3, HSP-1, BI-1 and CS-2.

Conclusion

Up-regulation of the genes confirmed the protective function of these genes in plants under abiotic stress. However, gene expression was affected by treatments, the extent of stress and the species of plant. This study came to the conclusion that physiological parameters could be utilized as marker indices to assess a tree's capability to withstand stress at seedling stage. The up-regulated genes will be further investigated and utilized to validate stress tolerance and susceptible teak seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BI:

BAX inhibitor

CRD:

Completely random design

CS:

Cellulose synthases

CT:

Threshold cycle

CXEs:

Carboxylesterase

DAT:

Days after treatment

EC:

Electrical conductivity

HSP:

Heat shock protein

MSI:

Membrane stability index

MYB:

Myeloblastosis

NaCl:

Sodium chloride

NTC:

Non-template control

PAL:

Phenylalenine ammonia lyase

PEG:

Polyethylene glycol

RIN:

RNA integrity number

ROS:

Reactive oxygen species

RT-PCR:

Real time PCR

RWC:

Relative water content

References

  1. Thakor MC, Fougat RS, Kumar S, Sakure AA (2019) Sequence-related amplified polymorphism (SRAP) analysis of teak (Tectona grandis L.) germplasm. Ecol Genet Genom 12:100041. https://doi.org/10.1016/j.egg.2019.100041

    Article  Google Scholar 

  2. Maisuria HJ, Dhaduk HL, Kumar S, Sakure AA, Thounaojam AT (2022) Teak population structure and genetic diversity in Gujarat India. Curr Plant Biol 32:100267. https://doi.org/10.1016/j.cpb.2022.100267

    Article  Google Scholar 

  3. Katwal R (2003) Teak in India: status, prospects and perspectives. In: Proceedings of the international conference on quality timber products of teak from sustainable forest management. Peechi, pp 2–5.

  4. Rosero C, Argout X, Ruiz M, Teran W (2011) A drought stress transcriptome profiling as the first genomic resource for white teak—Gamhar—(Gmelina arborea Roxb) and related species. BMC Proc 5(7):P178. https://doi.org/10.1186/1753-6561-5-S7-P178

    Article  PubMed Central  Google Scholar 

  5. Wang L (2014) Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiol Biochem 83:243–249. https://doi.org/10.1016/j.plaphy.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Lu Y, Zeng FJ, Li XY, Zhang B (2021) Physiological changes of three woody plants exposed to progressive salt stress. Photosynthetica 59(1):171–184. https://doi.org/10.32615/ps.2021.007

    Article  CAS  Google Scholar 

  7. Abdolinejad R, Shekafandeh A (2022) Tetraploidy confers superior in vitro water-stress tolerance to the fig tree (Ficus carica) by reinforcing hormonal, physiological, and biochemical defensive systems. Front Plant Sci 12:796215. https://doi.org/10.3389/fpls.2021.796215

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rahman MM, Anamul-Haque M, Arafat-Islam-Nihad S, Mahmudul-Hasan-Akand M, Ruhul-Amin-Howlader M (2016) Morpho-physiological response of Acacia auriculiformis as influenced by seawater induced salinity stress. For Syst 25(3):e071. https://doi.org/10.5424/fs/2016253-09386

    Article  Google Scholar 

  9. Tafreshi SAH, Aghaie P, Momayez HR, Hejaziyan SA (2021) Response of in vitro-regenerated Myrtus communis L. shoots to PEG-induced water stress. Biocatal Agric Biotechnol 34:102033. https://doi.org/10.1016/j.bcab.2021.102033

    Article  CAS  Google Scholar 

  10. Sinhababu A, Banerjee A (2013) Comparative responses of four tree legumes plants to PEG-induced water stress at seedling stage. Plant Physiol 1(1):1–5. https://doi.org/10.1007/s11738-003-0022-3

    Article  Google Scholar 

  11. Karimi S, Yadollahi A, Nazari-Moghadam R, Imani A, Arzani K (2012) In vitro screening of almond (Prunus dulcis (mill.)) genotypes for drought tolerance. J Biol Environ Sci 6(18):263–270

    Google Scholar 

  12. Rad PB, Roozban MR, Karimi S, Ghahremani R, Vahdati K (2021) Osmolyte accumulation and sodium compartmentation has a key role in salinity tolerance of Pistachios rootstocks. Agriculture 11(8):708. https://doi.org/10.3390/agriculture11080708

    Article  CAS  Google Scholar 

  13. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39. https://doi.org/10.1677/jme.0.0290023

    Article  CAS  PubMed  Google Scholar 

  14. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3(3):71–85

    PubMed  PubMed Central  Google Scholar 

  15. Liu C, Xie T, Chen C, Luan A, Long J, Li C, Ding Y, He Y (2017) Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics 18:503. https://doi.org/10.1186/s12864-017-3896-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao Y, Luo Q, Tian Y, Meng F (2017) Physiological and proteomic analyses of the drought stress response in Amygdalus mira (Koehne) Yüet Lu roots. BMC Plant Biol 17:53–69. https://doi.org/10.1186/s12870-017-1000-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinet CV, Watkinson JI, Sioson AA, Ramakrishnan N, Heath LS, Grene R (2010) Differential expression of heat shock protein genes in preconditioning for photosynthetic acclimation in water-stressed loblolly pine. Plant Physiol Biochem 48:256–264. https://doi.org/10.1016/j.plaphy.2009.12.005

    Article  CAS  Google Scholar 

  18. Kawai M, Pan L, Reed JC, Uchimiya H (1999) Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett 464(3):143–147. https://doi.org/10.1016/s0014-5793(99)01695-6

    Article  CAS  PubMed  Google Scholar 

  19. Jeong MJ, Choi BS, Bae DW, Shin SC, Park SU, Lim HS, Kim J, Kim JB, Cho BK, Bae H (2012) Differential expression of kenaf phenylalanine ammonia-lyase (PAL) ortholog during developmental stages and in response to abiotic stresses. Plant omics 5(4):392–399

    CAS  Google Scholar 

  20. Khakdana F, Alizadehb H, Ranjbarc M (2018) Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiol Biochem 130:464–472. https://doi.org/10.1016/j.plaphy.2018.07.026

    Article  CAS  Google Scholar 

  21. Behr M, Legay S, Hausman JF, Guerriero G (2015) Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. Int J Mol Sci 16(7):16104–16124. https://doi.org/10.3390/ijms160716104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mielke MS, Schaffer B, Li C (2010) Use of a SPAD meter to estimate chlorophyll content in Eugenia uniflora L. leaves as affected by contrasting light environments and soil flooding. Photosynthetica 48(3):332–338. https://doi.org/10.1007/s11099-010-0043-2

    Article  CAS  Google Scholar 

  23. Premachandra GS, Saneoka H, Fujita K, Ogata S (1990) Cell membrane stability and leaf water relations as affected by nitrogen nutrition under water stress in maize. Soil Sci Plant Nutr 36(4):653–659. https://doi.org/10.1080/00380768.1990.10416802

    Article  Google Scholar 

  24. Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35:299–319. https://doi.org/10.1146/annurev.pp.35.060184.001503

    Article  Google Scholar 

  25. Panse VG, Sukhatme PV (1978) Statistical methods for agricultural workers. Indian council of agricultural research, New Delhi, pp 87–89

    Google Scholar 

  26. Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth physiological biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82. https://doi.org/10.1080/17429145.2018.1424355

    Article  CAS  Google Scholar 

  27. Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X (2018) Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol 6:64. https://doi.org/10.3389/fevo.2018.00064

    Article  CAS  Google Scholar 

  28. Sneha C, Santhoshkumar AV, Sunil KM (2012) Effect of controlled irrigation on physiological and biometric characteristics in teak (Tectona grandis) seedlings. J Stress Physiol Biochem 8(3):196–202

    Google Scholar 

  29. Yue J, Fu Z, Zhang L, Zhang Z, Zhang J (2019) The positive effect of different 24-epibl pretreatments on salinity tolerance in Robinia pseudoacacia L. seedlings. Forests 10(1):4. https://doi.org/10.3390/f10010004

    Article  Google Scholar 

  30. Zhang T, Zhao Y, Wang Y, Liu Z, Gao C (2018) Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida. Front Plant Sci 9:1303. https://doi.org/10.3389/fpls.2018.01303

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen N, Feng J, Song B, Tang S, He J, Zhou Y, Shi S, Xu X (2019) De novo transcriptome sequencing and identification of genes related to salt and PEG stress in Tetraena mongolica Maxim. Trees-Struct Funct 33(6):1639–1656. https://doi.org/10.1007/s00468-019-01886-7

    Article  CAS  Google Scholar 

  32. Zhou L, Yarra R, Jin L, Cao H (2020) Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq.) under abiotic stress conditions. Environ Exp Bot 180:104245. https://doi.org/10.1016/j.envexpbot.2020.104245

    Article  CAS  Google Scholar 

  33. Li D, Peng S, Chen S, Li Z, He Y, Ren B, Yang G (2021) Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signalling. Physiol Mol Biol Plants 27(6):1323–1335. https://doi.org/10.1007/s12298-021-01008-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Wang R, Liu W, Zhang H, Guo Y, Wen R (2018) Genome-wide characterization of heat-shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress. Genes 9:35. https://doi.org/10.3390/genes9020035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z (2012) Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J Exp Bot 63(12):4571–4584. https://doi.org/10.1093/jxb/ers140

    Article  CAS  PubMed  Google Scholar 

  36. Lu PP, Zheng WJ, Wang CT, Shi WY, Fu JD, Chen M, Chen J, Zhou YB, Xi YJ, Xu ZS (2018) Wheat Bax Inhibitor-1 interacts with TaFKBP62 and mediates response to heat stress. BMC Plant Biol 18(1):259. https://doi.org/10.1186/s12870-018-1485-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duan Y, Zhang W, Li B, Wang Y, Li K, Sodmergen HC, Zhang Y, Li X (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695. https://doi.org/10.1111/j.1469-8137.2010.03207.x

    Article  CAS  PubMed  Google Scholar 

  38. Ramiro DA, Passarin DMM, Barbosa MA, Santos F, Gomez SGP, Junior NSM, Lam E, Carrer H (2016) Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnol J 14:1826–1837. https://doi.org/10.1111/pbi.12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45(6):884–894. https://doi.org/10.1111/j.1365-313X.2006.02654.x

    Article  CAS  PubMed  Google Scholar 

  40. Islam Z, Yun HK (2016) Identification and expression profiles of six transcripts encoding carboxylesterase protein in Vitis flexuosa infected with pathogens. Plant Pathol J 32(4):347–356. https://doi.org/10.5423/PPJ.OA.11.2015.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Han X, Qiu W, Xu D, Wang Y, Yu M, Hu X, Zhuo R (2019) Identification and expression analysis of the GDSL esterase/lipase family genes, and the characterization of SaGLIP8 in Sedum alfredii Hance under cadmium stress. Peer J 7:e6741. https://doi.org/10.7717/peerj.6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jahnen W, Hahlbrock K (1988) Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings. Planta 173(4):453–458. https://doi.org/10.1007/BF00958957

    Article  CAS  PubMed  Google Scholar 

  43. Guerriero G, Legay S, Hausman JF (2014) Alfalfa cellulose synthase gene expression under abiotic stress: a Hitchhiker’s guide to RT-qPCR normalization. PLoS ONE 9(8):e103808. https://doi.org/10.1371/journal.pone.0103808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goncalves LP, Camargo RLB, Takita MA, Machado A, Filho WSS, Costa MGC (2019) Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genomics 20:110. https://doi.org/10.1186/s12864-019-5481-z

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Cheng X, Fu Y, Wu Q, Guo Y, Peng J, Zhang W, He B (2019) A genome-wide analysis of the cellulose synthase-like (Csl) gene family in maize. Biol Plant 63:721–732. https://doi.org/10.32615/bp.2019.081

    Article  CAS  Google Scholar 

  46. Zhao R, Cheng H, Wang Q, Lv L, Zhang Y, Song G, Zuo D (2022) Identification of the CesA subfamily and functional analysis of GhMCesA35 in Gossypium hirsutum L. Genes 13(2):292. https://doi.org/10.3390/genes13020292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemanshukumar J. Maisuria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Research involving human and animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maisuria, H.J., Dhaduk, H.L., Kumar, S. et al. Physiological and gene expression responses involved in teak (Tectona grandis L.) seedlings exposed to osmotic and salt stressors. Mol Biol Rep 50, 4875–4886 (2023). https://doi.org/10.1007/s11033-023-08437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08437-x

Keywords

Navigation