Skip to main content
Log in

Functional characterization of Labeo rohita muscle cell line for in vitro research

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Labeo rohita represents the most dominant fish species in Indian aquaculture and the fish cell lines have been used as an excellent in vitro platform for performing various biological research.

Methods and results

The LRM cell culture developed from the muscle tissue of L. rohita was used to study the in vitro applications. The developed muscle cells were maintained in a Leibovitz‘s-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF at 28 oC temperature. The LRM cells showed fibroblastic-like morphology and was authenticated by sequencing mitochondrial gene 16S rRNA. The expression of myogenic regulatory factors (MRFs) was studied in different stages of LRM cells; however, the expression patterns varied at different passages. The MEF2A, Mrf-4, and Myogenin expressions were higher in passage 25, while the expression of MyoD was maximum in passage 15, and the expression of Myf-5 was highest in passage 1. The transfection efficiency of LRM cells revealed 14 % of the GFP expression with a pmaxGFP vector DNA. The LRM cells were susceptible to the extracellular products prepared from Aeromonas hydrophilla and Edwardsiella tarda. The acute cytotoxicity of six heavy metals (Hg, Cd, Zn, Cu, Pb, Ni) was assessed in LRM cells by a dose-dependent manner in comparison to IC50 values obtained from MTT and NR assays. A revival rate of 70–75% was achieved when the LRM cells were cryopreserved at − 196 °C using liquid nitrogen.

Conclusion

The developed muscle cells serve as an functional in vitro tool for toxicological and biotechnological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated.

References

  1. Lannan CN (1994) Fish cell culture: a protocol for quality control. J Tissue Cult Methods 16:95–98. https://doi.org/10.1007/BF01404817

    Article  Google Scholar 

  2. Goswami M, Yashwanth BS, Trudeau V, Lakra WS (2022) Role and relevance of fish cell lines in advanced in vitro research. Mol Biol Rep 11:1–19. https://doi.org/10.1007/s11033-021-06997-4

    Article  CAS  Google Scholar 

  3. Wolf K, Quimby MC (1962) Established eurythermic line of fsh cells in vitro. Science 135:1065–1066. https://doi.org/10.1126/science.135.3508.1065

    Article  CAS  PubMed  Google Scholar 

  4. Bairoch A (2022) The cellosaurus: a cell line knowledge resource. https://web.expasy.org/cgibin/cellosaurus/search?input=%22Fish%20cell%20line%22. Accessed on 10 Sep 2022

  5. Sengupta A, Mukherjee S, Bhattacharya S, Saha SK, Chattopadhyay A (2014) Expression pattern of myogenic regulatory transcription factor mRNAs in the embryo and adult Labeo rohita (Hamilton, 1822). Int J Zool. https://doi.org/10.1155/2014/259685

    Article  Google Scholar 

  6. Torres-Velarde J, Bautista-Guerrero E, Sifuentes-Romero I, García-Gasca T, García-Gasca A (2016) A muscle-tissue culture system to study myostatin function in fish. Novinka, USA

  7. Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244

    Article  CAS  PubMed  Google Scholar 

  8. Tan X, Hoang L, Du S (2002) Characterization of muscle-regulatory genes, Myf5 and myogenin, from striped bass and promoter analysis of muscle-specific expression. Mar Biotechnol 4:537–545. https://doi.org/10.1007/s10126-002-0013-1

    Article  Google Scholar 

  9. Du SJ, Gao J, Anyangwe V (2003) Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp. Biochem. Physiol. B. Biochem Mol Biol 134:123–134

    Article  Google Scholar 

  10. Kobiyama A, Nihei Y, Hirayama Y, Kikuchi KI, Suetake HI, Johnston IA et al (1998) Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp. J Exp Biol 201:2801–2813

    Article  CAS  PubMed  Google Scholar 

  11. Dodou E, Xu SM, Black BL (2003) mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev 120:1021–1032

    Article  CAS  PubMed  Google Scholar 

  12. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67. https://doi.org/10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140

    Article  CAS  PubMed  Google Scholar 

  14. Jia P, Jin F, Xiang Y, Li J, Pan H, Cui K et al (2022) Establishment and characterization of a fin cell line from yellowfin sea bream (Acanthopagrus latus) and its application to fish virology and toxicology. Aquaculture 549:737801. https://doi.org/10.1016/j.aquaculture.2021.737801

    Article  CAS  Google Scholar 

  15. Salunke A, Pandya P, Upadhyay A, Parikh P (2022) Assessment of sublethal toxicity using proliferation markers in fish cell line-ICG exposed to agrochemicals. J Appl Biol Biotechnol 10:5–4. https://doi.org/10.7324/JABB.2022.100308

    Article  Google Scholar 

  16. Wei C, Yang X, Kang M, Cao Z, Sun Y, Zhou Y (2022) An established kidney cell line from humpback grouper (Cromileptes altivelis) and its susceptibility to bacteria and heavy metals. Fish Physiol Biochem 48:521–533. https://doi.org/10.1007/s10695-022-01065-5

    Article  CAS  PubMed  Google Scholar 

  17. Assefa A, Abunna F (2018) Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int. https://doi.org/10.1155/2018/5432497

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harikrishnan R, Devi G, Balasundaram C, Van Doan H, Jaturasitha S, Ringø E et al (2021) Effect of chrysophanic acid on immune response and immune genes transcriptomic profile in Catla catla against Aeromonas hydrophila. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-020-79629-9

    Article  CAS  Google Scholar 

  19. Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquac 246:37–61. https://doi.org/10.1016/j.aquaculture.2005.01.002

    Article  Google Scholar 

  20. Miranda CD, Godoy FA, Lee MR (2018) Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front Microbiol 9:1284. https://doi.org/10.3389/fmicb.2018.01284

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swain P, Behura A, Dash S, Nayak SK (2007) Serum antibody response of Indian major carp, Labeo rohita to three species of pathogenic bacteria; Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens. Vet Immunol Immunop 117:137–41. https://doi.org/10.1016/j.vetimm.2007.02.010

    Article  CAS  Google Scholar 

  22. Bury NR, Schnell S, Hogstrand C (2014) Gill cell culture systems as models for aquatic environmental monitoring. J Exp Biol 217:639–650. https://doi.org/10.1242/jeb.095430

    Article  CAS  PubMed  Google Scholar 

  23. Rachlin JW, Perlmutter A (1968) Fish cells in culture for study of aquatic toxicants. Water Res 2:409–14. https://doi.org/10.1016/0043-1354(68)90060-2

    Article  Google Scholar 

  24. Bols NC, Dayeh VR, Lee LEJ, Schirmer K (2005) Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. Biochem Molec Biol Fishes 6:43–84. https://doi.org/10.1016/S1873-0140(05)80005-0

    Article  CAS  Google Scholar 

  25. Chatterjee S, Chattopadhyay B, Mukhopadhyay SK (2016) Trace metal distribution in tissues of cichlids (Orechromis niloticus and O. mossaambicus) collected from wastewater-fed fishponds in East Calcutta Wetlands, a Ramsar site. Acta Ichthyol Piscat 36:119–125

    Article  Google Scholar 

  26. Kumar B, Kumar KS, Priya M, Mukhopadhyay D, Shah R (2010) Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in Eastern Kolkata, India. Toxicol Environ Chem 92:243–260. https://doi.org/10.1080/02772240902942394

    Article  CAS  Google Scholar 

  27. Talapatra SN, Banerjee SK (2007) Detection of micronucleus and abnormal nucleus in erythrocytes from the gill and kidney of Labeo bata cultivated in sewage-fed fish farms. Food Chem Toxicol 45:210–215. https://doi.org/10.1016/j.fct.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes D, Zanuy S, Bebianno MJ, Porte C (2008) Chemical and biochemical tools to assess pollution exposure in cultured fish. Environ Pollut 152:138–146. https://doi.org/10.1016/j.envpol.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  29. Mari M, Nadal M, Schuhmacher M, Barbería E, García F, Domingo JL (2014) Human exposure to metals: levels in autopsy tissues of individuals living near a hazardous waste incinerator. Biol Trace Elem Res 159(1):15–21. https://doi.org/10.1007/s12011-014-9957-z

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (No. Ed. 2). Cold spring harbor laboratory press

  31. Zhang J, Hanner R (2012) Molecular approach to the identification of fish in the South China Sea. PLoS One 7:30621. https://doi.org/10.1371/journal.pone.0030621

    Article  CAS  Google Scholar 

  32. Garg CK, Sahu NP, Shamna N, Deo AD, Fawole FJ, Kumar S, Maiti MK (2019) Effect of dietary Houttuynia cordata leaf meal and leaf extract on the growth performance, nutrient utilization and expression of IGF-I gene in Labeo rohita. Aquac Nutr 25(3):702–711. https://doi.org/10.1111/anu.12891

    Article  CAS  Google Scholar 

  33. Balebona MC, Andreu MJ, Bordas MA, Zorrilla I, Morinigo MA, Borrego JJ (1998) Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol 64:4269–4275. https://doi.org/10.1128/AEM.64.11.4269-4275.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Avella M, Berhaut J, Payan P (1994) Primary culture of gill epithelial cells from the seabass Dicentrarchus labrax. In Vitro Cell Dev Biol 30:41–49. https://doi.org/10.1007/BF02631417

    Article  Google Scholar 

  35. Nanda PK, Swain P, Nayak SK, Behera T, Dhama K (2014) Comparative study on enzymatic and explant method in establishing primary culture from different cultivable cells of Indian Major Carp, Cirrhinus mrigala. AJAVA 9:281–291

    Google Scholar 

  36. Gao Y, Zhou H, Gao Z, Jiang H, Wang X, Mai K et al (2019) Establishment and characterization of a fibroblast-like cell line from the muscle of turbot (Scophthalmus maximus L.). Fish Physiol Biochem 45:1129–1139. https://doi.org/10.1007/s10695-019-00628-3

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Cao Z, Liu Y, Xiang Y, Sun Y, Zhou Y et al (2020) Establishment and characterization of a new cell line from the muscle of humpback grouper (Cromileptes altivelis). Fish Physiol Biochem 46:1897–1907. https://doi.org/10.1007/s10695-020-00841-5

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Z, Lu Y (2006) Establishment and characterization of two cell lines from bluefin trevally Caranx melampygus. Dis Aquat 68:91–100. https://doi.org/10.3354/dao068091

    Article  CAS  Google Scholar 

  39. Yashwanth BS, Goswami M, Kooloth Valappil R, Thakuria D, Chaudhari A (2020) Characterization of a new cell line from ornamental fish Amphiprion ocellaris (Cuvier, 1830) and its susceptibility to nervous necrosis virus. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-76807-7

    Article  CAS  Google Scholar 

  40. Vitello L, Radu C, Malerba A, Segat D, Cantini M, Carraro U et al (2004) Enhancing myoblast proliferation by using myogenic factors: a promising approach for improving fiber regeneration in sport medicine and skeletal muscle diseases. Basic Appl Myol 14:45–51

    Google Scholar 

  41. Nicola NA, Babon JJ (2015) Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 26:533–544. https://doi.org/10.1016/j.cytogfr.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pawlikowski B, Vogler TO, Gadek K, Olwin BB (2017) Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 246:359–367. https://doi.org/10.1002/dvdy.24495

    Article  CAS  PubMed  Google Scholar 

  43. Kitzmann M, Fernandez A (2001) Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58:571–579. https://doi.org/10.1007/PL00000882

    Article  CAS  PubMed  Google Scholar 

  44. Yun K, Wold B (1996) Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8:877–889

    Article  CAS  PubMed  Google Scholar 

  45. Chal J, Pourquié O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Dev 144:2104–2122

    Article  CAS  Google Scholar 

  46. Dubey A, Goswami M, Yadav K, Mishra A, Kumar A (2015) Establishment of a novel muscle cell line from Wallago attu for in vitro study of pesticide toxicity. GCT. https://doi.org/10.17795/gct-25568

    Article  Google Scholar 

  47. Meng Z, Kang Z, Sun C, Yang S, Zhao B, Feng S et al (2018) Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR. Nanoscale 10:1215–1227. https://doi.org/10.1039/C7NR05843H

    Article  CAS  PubMed  Google Scholar 

  48. Llobrera AT, Gacutan KG (1987) Aeromonas hydrophila associated with ulcerative disease in Laguna de Bay, Philippines. Aquac 67:273–278. https://doi.org/10.1016/0044-8486(87)90211-0

    Article  Google Scholar 

  49. Takano T, Matsuyama T, Oseko N, Sakai T, Kamaishi T, Nakayasu C et al (2010) The efficacy of five avirulent Edwardsiella tarda strains in a live vaccine against Edwardsiellosis in Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol 29:687–693. https://doi.org/10.1016/j.fsi.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  50. Yu Y, Wei S, Wang Z, Huang X, Huang Y, Cai J et al (2016) Establishment of a new cell line from the snout tissue of golden pompano, Trachinotus ovatus, and its application in virus susceptibility. J Fish Biol 88:2251–2262. https://doi.org/10.1111/jfb.12986

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Wei C, Liu Z, Cao Z, Sun Y, Zhou Y et al (2021) Establishment of a new fish cell line from the brain of humpback grouper (Cromileptes altivelis) and its application in toxicology and bacterial susceptibility. Fish Physiol Biochem 47:1645–1658. https://doi.org/10.1007/s10695-021-01006-8

    Article  CAS  PubMed  Google Scholar 

  52. Semple SL, Heath G, Christie D, Braunstein M, Kales SC, Dixon B (2019) Immune stimulation of rainbow trout reveals divergent regulation of MH class II-associated invariant chain isoforms. Immunogenetics 71:407–20. https://doi.org/10.1007/s00251-019-01115-y

    Article  CAS  PubMed  Google Scholar 

  53. Maracine M, Segner H (1998) Cytotoxicity of metals in isolated fish cells: importance of the cellular glutathione status. Compar Biochem Physiol Part A 120:83. https://doi.org/10.1016/S1095-6433(98)10013-2

    Article  Google Scholar 

  54. Zhou L, Li P, Liu J, Ni S, Yu Y, Yang M et al (2017) Establishment and characterization of a mid-kidney cell line derived from golden pompano Trachinotus ovatus, a new cell model for virus pathogenesis and toxicology studies. In Vitro Cell Dev Biol-An 53:320–327. https://doi.org/10.1007/s11626-016-0112-3

    Article  CAS  Google Scholar 

  55. Morcillo P, Esteban MA, Cuesta A (2016) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fsh SAF-1 cell line. Chemosphere 144:225–233. https://doi.org/10.1016/j.chemosphere.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  56. Lakra WS, Swaminathan TR, Rathore G, Goswami M, Yadav K, Kapoor S (2010) Development and characterization of three new diploid cell lines from Labeo rohita (Ham.). Biotechnol Prog 26:1008–1013. https://doi.org/10.1002/btpr.418

    Article  CAS  PubMed  Google Scholar 

  57. Abdul MS, Nambi KS, Taju G, Sundar RN, Madan N, Sahul HAS (2013) Establishment and characterization of permanent cell line from gill tissue of Labeo rohita (Hamilton) and its application in gene expression and toxicology. Cell Biol Toxicol 29:59–73. https://doi.org/10.1007/s10565-012-9237-7

    Article  CAS  Google Scholar 

  58. Goswami M, Belathur SY, Sathiyanarayanan A, Pinto N, Duscher A, Ovissipour R et al (2022) Cellular aquaculture: prospects and challenges. Micromachines 13:828. https://doi.org/10.3390/mi13060828

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Dr. C.N. Ravishankar, Director, ICAR- CIFE, Mumbai. The authors acknowledge Central Cell Culture facility supported by ICAR-Central Institute of Fisheries Education, Mumbai.

Funding

This work was supported by Indian Council of Agricultural Research, New Delhi and Good Food Institute, USA to carry out the research.

Author information

Authors and Affiliations

Authors

Contributions

YBS: Bench work, original draft writing—writing, review and editing, and methodology. NP: Bacterial ECP testing, toxicology. AS: Cell line maintenance, toxicology. AC: Molecular characterisation. KDR: In vitro myogenesis. MG: Experimental Design, Conceptualization, and Overall Supervision.

Corresponding author

Correspondence to Mukunda Goswami.

Ethics declarations

Conflict of interest

The authors wish to declare no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed and approved by Institutional Animal Ethics Committee (IAEC), ICAR- Central Institute of Fisheries Education, Mumbai, Maharashtra, India.

Consent to participate

Not Applicable.

Consent to publish

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashwanth, B.S., Pinto, N., Sathiyanarayanan, A. et al. Functional characterization of Labeo rohita muscle cell line for in vitro research. Mol Biol Rep 50, 5635–5646 (2023). https://doi.org/10.1007/s11033-023-08427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08427-z

Keywords

Navigation