Skip to main content
Log in

Tissue heterogeneity of mitochondrial activity, biogenesis and mitochondrial protein gene expression in buffalo

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cellular metabolism is most invariant process, occurring in all living organisms, which involves mitochondrial proteins from both nuclear and mitochondrial genomes. The mitochondrial DNA (mtDNA) copy number, protein-coding genes (mtPCGs) expression, and activity vary between various tissues to fulfill specific energy demands across the tissues.

Methods and Results

In present study, we investigated the OXPHOS complexes and citrate synthase activity in isolated mitochondria from various tissues of freshly slaughtered buffaloes (n = 3). Further, the evaluation of tissue-specific diversity based on the quantification of mtDNA copy numbers was performed and also comprised an expression study of 13 mtPCGs. We found that the functional activity of individual OXPHOS complex I was significantly higher in the liver compared to muscle and brain. Additionally, OXPHOS complex III and V activities was observed significantly higher levels in liver compared to heart, ovary, and brain. Similarly, CS-specific activity differs between tissues, with the ovary, kidney, and liver having significantly greater. Furthermore, we revealed the mtDNA copy number was strictly tissue-specific, with muscle and brain tissues exhibiting the highest levels. Among 13 PCGs expression analyses, mRNA abundances in all genes were differentially expressed among the different tissue.

Conclusions

Overall, our results indicate the existence of a tissue-specific variation in mitochondrial activity, bioenergetics, and mtPCGs expression among various types of buffalo tissues. This study serves as a critical first stage in gathering vital comparable data about the physiological function of mitochondria in energy metabolism in distinct tissues, laying the groundwork for future mitochondrial based diagnosis and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data generated from the study is presented in the Manuscript. Further details are presented in Additional files. Information not included would be shared by the corresponding author on reasonable request.

Abbreviations

mtDNA:

Mitochondrial DNA

mtPCGs:

Mitochondrial protein-coding genes

OXPHOS:

Oxidative phosphorylation

ROS:

Reactive oxygen species

AT:

Adipose tissue

MRC:

Mitochondrial respiratory chain

CS:

Citrate synthase

References

  1. 20th Livestock Census (2019) All India Report, Department of Animal Husbandry, Dairying and Fisheries Ministry of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India.

  2. Hood WR, Austad SN, Bize P, Jimenez AG, Montooth KL, Schulte PM, Salin K (2018) The mitochondrial contribution to animal performance, adaptation, and life-history variation. Integr Comp Biol 58(3):480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26(6):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206

    Article  CAS  PubMed  Google Scholar 

  5. Annesley SJ, Fisher PR (2019) Mitochondria in health and disease. Cells 8:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P (2011) Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 11:207–213

    Article  CAS  PubMed  Google Scholar 

  7. Yan Y, Xie X (2015) Metabolic compensations in mitochondria isolated from the heart, liver, kidney, brain and white muscle in the southern catfish (Silurusmeridionalis) by seasonal acclimation. Comp Biochem Physiol A 183:64–71

    Article  CAS  Google Scholar 

  8. Vaughan O, Fowden A (2016) Placental metabolism: substrate requirements and the response to stress. Reprod Domest Anim 51:25–35

    Article  CAS  PubMed  Google Scholar 

  9. Hebert JF, Myatt L (2021) Placental mitochondrial dysfunction with metabolic diseases: therapeutic approaches. Mol Basis Dis 1867:165967

    Article  CAS  Google Scholar 

  10. Johnson DT, Harris RA, Blair PV, Balaban RS (2007) Functional consequences of mitochondrial proteome heterogeneity. Am J Physiol Cell Physiol 292:C698–C707. https://doi.org/10.1152/ajpcell.00109

    Article  CAS  PubMed  Google Scholar 

  11. Lane RK, Hilsabeck T, Rea SL (2015) The role of mitochondrial dysfunction in age-related diseases. Biochim Biophys Acta - Bioenerg 1847:1387–1400

    Article  CAS  Google Scholar 

  12. Vuda M, Kamath A (2016) Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 31:63–74

    Article  CAS  PubMed  Google Scholar 

  13. Ng YS, Turnbull DM (2016) Mitochondrial disease: genetics and management. J Neurol 263:179–191

    Article  CAS  PubMed  Google Scholar 

  14. Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS (2020) Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 295:18406–18425

    Article  CAS  PubMed  Google Scholar 

  15. Mayr JA, Haack TB, Freisinger P, Karall D, Makowski C, Koch J, Feichtinger RG, Zimmermann FA, Rolinski B, Ahting U (2015) Spectrum of combined respiratory chain defects. J Inherit Metab Dis 38:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Protasoni M, Perez-Pérez R, Lobo-Jarne T, Harbour ME, Ding S, Penas A, Diaz F, Moraes CT, Fearnley IM, Zeviani M (2020) Respiratory supercomplexes act as a platform for complex III –mediated maturation of human mitochondrial complexes I and IV. EMBO J 39:e102817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poulton J, Finsterer J, Yu-Wai-Man P (2017) Genetic counseling for maternally inherited mitochondrial disorders. Mol Diagn Ther 21:419–429

    Article  PubMed  Google Scholar 

  18. Spehar M, Ferencakovic M, Brajkovic V, Curik I (2017) Variance estimation of maternal lineage effect on milk traits in Croatian Holstein Cattle. Agric Conspec Sci 82(3):263–266

    Google Scholar 

  19. Uittenbogaard M, Chiaramello A (2014) Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des 20(35):5574–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laubenthal L, Hoelker M, Frahm J, Dänicke S, Gerlach K, Südekum KH, Sauerwein H, Häussler S (2016) Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows. J Dairy Sci 99:1571–1583

    Article  CAS  PubMed  Google Scholar 

  21. Gureev AP, Shaforostova EA, Popov VN (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 10:435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640

    Article  CAS  PubMed  Google Scholar 

  23. Kelly R, Mahmud A, McKenzie M, Trounce I, St John J (2012) Mitochondrial DNA copy number is regulated in a tissue-specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma a. Nucleic Acids Res 40:10124–10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanglard LP, Kuehn LA, Snelling WM, Spangler ML (2022) Influence of environmental factors and genetic variation on mitochondrial DNA copy number. J Anim Sci 100:1–9

    Article  Google Scholar 

  25. Kennedy KM, Becker F, Hammon HM, Kuhla B (2021) Differences in net fat oxidation, heat production, and liver mitochondrial DNA copy numbers between high and low feed-efficient dairy cows. J Dairy Sci 104:9287–9303

    Article  CAS  PubMed  Google Scholar 

  26. Fukunaga H (2021) Mitochondrial DNA copy number and developmental origins of health and disease (DOHaD). IntJMolSci 22:6634

    CAS  Google Scholar 

  27. Ramanathan R, Nair MN, Wang Y, Li S, Beach CM, Mancini RA, Belskie K, Suman SP (2021) Differential abundance of mitochondrial proteome influences the color stability of beef longissimus lumborum and psoas major muscles. Meat Muscle Biol 5(1):1–16. https://doi.org/10.22175/mmb.11705

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. BenardG FB, Passerieux E, GalinierA RC, Bellance N, Delage JP, Casteilla L, Letellier T, Rossignol R (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 291:C1172–C1182

    Article  Google Scholar 

  30. Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. Meth Cell Biol 80:93–119

    Article  CAS  Google Scholar 

  31. Fernández-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P (2011) Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 11(1):207–213. https://doi.org/10.1016/j.mito.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  32. Kunz WS (2003) Different metabolic properties of mitochondrial oxidative phosphorylation in different cell types- important implications for mitochondrial cytopathies. Exp Physiol 88:149–154

    Article  CAS  PubMed  Google Scholar 

  33. Bujan N, Moren C, García-Garcia FJ, Blazquez A, Carnicer C, Cortes AB, Gonzalez C, Lopez-Gallardo E, Lozano E, Moliner S (2022) Multicentric standardization of protocols for the diagnosis of human mitochondrial respiratory chain defects. Antioxidants 11:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mari M, Colell A (2021) Mitochondrial oxidative and nitrosative stress as a therapeutic target in diseases. Antioxidants 10:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jezek P (2021) Mitochondrial redox regulations and redox biology of mitochondria. Antioxidants 10:1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan YL, Xie XJ (2011) Liver mitochondrial and whole-animal level metabolic compensation in a catfish during seasonal acclimatization. CurrZool 57(1):109–115

    Google Scholar 

  37. Eigentler A, Draxl A, Wiethuchter A, Kuznetsov AV, Lassing B, Gnaiger E (2015) Laboratory protocol: citrate synthase a mitochondrial marker enzyme. Mitochond Physiol Netw 04:1–11

    Google Scholar 

  38. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590(14):3349–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Al-Kafaji G, Golbahar J (2013) High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. Biomed Res Int 2013:754946

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee JY, Lee DC, Im JA, Lee JW (2014) Mitochondrial DNA copy number in peripheral blood is independently associated with visceral fat accumulation in healthy young adults. Int J Endocrinol 2014:586017

    Article  PubMed  PubMed Central  Google Scholar 

  41. Herbers E, Kekäläinen NJ, Hangas A, Pohjoismäki JL, Goffart S (2019) Tissue-specific differences in mitochondrial DNA maintenance and expression. Mitochondrion 44:85–92. https://doi.org/10.1016/j.mito.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  42. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  CAS  PubMed  Google Scholar 

  43. Weikard R, Kuehn C (2018) Different mitochondrial DNA copy number in liver and mammary gland of lactating cows with divergent genetic background for milk production. Mol Biol Rep 45(5):1209–1218. https://doi.org/10.1007/s11033-018-4273-x

    Article  CAS  PubMed  Google Scholar 

  44. Alex AP, Collier JL, Hadsell DL, Collier RJ (2015) Milk yield differences between 1 x and 4 x milking are associated with changes in mitochondrial number and milk protein gene expression but not mammary cell apoptosis or SOCS gene expression. J Dairy Sci 98:4439–4448

    Article  CAS  PubMed  Google Scholar 

  45. Qu B, Jiang Y, Zhao F, Xiao J, Li QZ (2012) Changes of endoplasmic reticulum and mitochondria in mammary epithelial cells during mammogenesis in Chinese Holstein dairy cows. Acta Histochem 114:448–453

    Article  CAS  PubMed  Google Scholar 

  46. Dorji J, VanderJagt CJ, Gamer JB, Marett LC, Mason BA, Reich CM, Xiang R, Clark EL, Cocks BG, Al C, MacLeod IM, Daetwyler HD (2020) Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle. BMC Genom 21(1):720

    Article  CAS  Google Scholar 

  47. Manczak M, Jung Y, Park BS, Partovi D, Reddy PH (2005) Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem 92(3):494–504. https://doi.org/10.1111/j.1471-4159.2004.02884.x

    Article  CAS  PubMed  Google Scholar 

  48. Glaister M (2002) Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 35(9):757–777. https://doi.org/10.2165/00007256-200535090-00003

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Science and Engineering Research Board, Department of Science and Technology, Government of India for funding this work. The authors would like to thank, Director, ICAR-National Dairy Research Institute, for providing the necessary facilities for conducting this research.

Funding

This study was financially supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SEM conceived this project and designed the experiments; SEM and NS carried out the experiments, completed data analysis and drafted the manuscript with MLS; SK, AAN and AM helped in the preparation of figures; all authors read and approved the final manuscript.

Corresponding author

Correspondence to E. M. Sadeesh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

Ethical approval

This article does not contain any studies on humans or animals.

Consent to participate

This article does not contain any individual person’s data in any form.

Consent to publish

All authors agreed to publish the research in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeesh, E.M., Singla, N., Lahamge, M.S. et al. Tissue heterogeneity of mitochondrial activity, biogenesis and mitochondrial protein gene expression in buffalo. Mol Biol Rep 50, 5255–5266 (2023). https://doi.org/10.1007/s11033-023-08416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08416-2

Keywords

Navigation