Skip to main content

Advertisement

Log in

A comparison between centrally and systemically administered erythropoietin on kidney protection in a model of fixed-volume hemorrhagic shock in male rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In this study, a comparison between centrally and systemically administered erythropoietin (EPO) was performed on nephroprotection during hemorrhagic shock (HS) in male rats.

Methods

Male rats were allocated into four experimental groups. (1) Sham; a guide cannula was inserted into the left lateral ventricle and other cannulas were placed into the left femoral artery and vein. (2) HS; stereotaxic surgery was done to insert a cannula in the left lateral ventricle and after a 7-day recovery; hemorrhagic shock and resuscitation were performed. (3) EPO-systemic; the procedure was the same as the HS group except that animals received 300 IU/kg erythropoietin into the femoral vein immediately before resuscitation. (4) EPO-central; animals was treated with erythropoietin (2 IU/rat) into the left lateral ventricle before resuscitation. Arterial oxygen saturation (SaO2) was measured during experiments. Urine and renal tissue samples were stored for ex-vivo indices assessments.

Results

Erythropoietin (systemically/centrally administered) significantly improved SaO2, renal functional and oxidative stress parameters and decreased renal inflammatory (TNF-α and IL-6) mRNA expression compared to the HS group. EPO-treated groups showed a decrease in active form of caspase-3 protein level and an increase in autophagy activity in comparison with the HS group.

Conclusion

Considering the fact that the effective dose of systemic EPO (300 IU/kg) was roughly 50 times higher than that of central administration (2 IU/rat), centrally administered EPO was accompanied by more advantageous consequences than systemic way. EPO is likely to act as a neuro-modulator or neuro-mediator in the central protection of organs including the kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data will be available by reasonable request.

References

  1. Kholmukhamedov A, Czerny C, Hu J, Schwartz J, Zhong Z, Lemasters JJ (2014) Minocycline and doxycycline, but not tetracycline, mitigate liver and kidney injury after hemorrhagic shock/resuscitation. Shock 42(3):256–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ranjbaran M, Kadkhodaee M, Seifi B, Adelipour M, Azarian B (2017) Erythropoietin attenuates experimental haemorrhagic shock-induced renal damage through an iNOS- dependent mechanism in male Wistar rats. Injury 48(2):262–269

    Article  CAS  PubMed  Google Scholar 

  3. Kushimoto S, Kudo D, Kawazoe Y (2016) Acute traumatic coagulopathy and trauma-induced coagulopathy: an overview. J Intensive Care 5:1–7

    Google Scholar 

  4. Wang Y, Yan J, Xi L, Qian Z, Wang Z, Yang L (2012) Protective effect of crocetin on hemorrhagic shock-induced acute renal failure in rats. Shock (Augusta Ga) 38(1):63–67

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert K, Rousseau G, Bouchard C, Dunberry-Poissant S, Baril F, Cardinal AM et al (2019) Caspase-(8/3) activation and organ inflammation in a rat model of resuscitated hemorrhagic shock: a role for uric acid. J Trauma Acute Care Surg 86(3):431–439

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Di L, Noguchi CT (2014) Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci 10(8):921–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C et al (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci U S A 92(9):3717–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V et al (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8(4):666–676

    Article  CAS  PubMed  Google Scholar 

  9. Ranjbaran M, Kadkhodaee M, Seifi B (2017) Renal tissue pro-inflammatory gene expression is reduced by erythropoietin in rats subjected to hemorrhagic shock. J Nephropathol 6(2):69–73

    Article  PubMed  Google Scholar 

  10. Yoo SJ, Cho B, Lee D, Son G, Lee YB, Soo Han H et al (2017) The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage. Cell Death Dis 8(8):e3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hasselblatt M, Ehrenreich H, Siren AL (2006) The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 18(2):132–138

    Article  PubMed  Google Scholar 

  12. Gu L, Xu H, Wang F, Xu G, Sinha D, Wang J et al (2014) Erythropoietin exerts a neuroprotective function against glutamate neurotoxicity in experimental diabetic retina. Invest Ophthalmol Vis Sci 55(12):8208–8222

    Article  CAS  PubMed  Google Scholar 

  13. Seifi B, Kadkhodaee M, Ranjbaran M, Bakhshi E (2018) Nephroprotection through the Akt/eNOS pathway by centrally administered erythropoietin in a rat model of fixed-volume hemorrhage. Life Sci 193:180–185

    Article  CAS  PubMed  Google Scholar 

  14. Maiese K (2015) Erythropoietin and diabetes mellitus. World J Diabetes 6(14):1259

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhong L, Zhang H, Ding Z-F, Li J, Lv J-W, Pan Z-J et al (2020) Erythropoietin-induced autophagy protects against spinal cord injury and improves neurological function via the extracellular-regulated protein kinase signaling pathway. Mol Neurobiol 57(10):3993–4006

    Article  CAS  PubMed  Google Scholar 

  16. Bendix I, Schulze C, Haefen Cv, Gellhaus A, Endesfelder S, Heumann R et al (2012) Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity. Int J Mol Sci 13(10):12939–12951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. ed t

  18. Ahmadi-Yazdi C, Williams B, Oakes S, Moore FD (2009) Jr. Attenuation of the effects of rat hemorrhagic shock with a reperfusion injury-inhibiting agent specific to mice. Shock 32(3):295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seifi B, Kadkhodaee M, Bakhshi E, Ranjbaran M, Ahghari P, Rastegar T (2014) Enhancement of renal oxidative stress by injection of angiotensin II into the paraventricular nucleus in renal ischemia-reperfusion injury. Can J Physiol Pharmacol 92(9):752–757

    Article  CAS  PubMed  Google Scholar 

  20. Ali RJ, Al-Obaidi FH, Arif HS (2014) The role of urinary N-acetyl Beta-D-glucosaminidase in children with urological problems. Oman Med J 29(4):285–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  22. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212

    Article  CAS  PubMed  Google Scholar 

  23. Torres Filho IP, Torres LN, Pittman RN (2010) Early physiologic responses to hemorrhagic hypotension. Transl Res 155(2):78–88

    Article  CAS  PubMed  Google Scholar 

  24. Nandra KK, Collino M, Rogazzo M, Fantozzi R, Patel NS, Thiemermann C (2013) Pharmacological preconditioning with erythropoietin attenuates the organ injury and dysfunction induced in a rat model of hemorrhagic shock. Dis Model Mech 6(3):701–709

    CAS  PubMed  Google Scholar 

  25. Teng Y, Zhang J, Zhang Z, Feng J (2018) The effect of chronic fluorosis on calcium ions and camkiialpha, and c-fos expression in the rat hippocampus. Biol Trace Elem Res 182(2):295–302

    Article  CAS  PubMed  Google Scholar 

  26. Devarajan P (2008) Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Invest Suppl 241:89–94

    Article  PubMed  PubMed Central  Google Scholar 

  27. Skalova S (2005) The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica (Hradec Kralove) 48(2):75–80

    Article  CAS  PubMed  Google Scholar 

  28. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  29. Kumar M, Bhoi S (2015) Does erythropoietin reactivate bone marrow dysfunction in trauma hemorrhagic shock? Int J Crit Illn Inj Sci 5(4):230–231

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhuang S, Yan Y, Daubert RA, Han J, Schnellmann RG (2007) ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of akt in renal epithelial cells. Am J Physiol Renal Physiol 292:F440–F7

    Article  CAS  PubMed  Google Scholar 

  31. Li P, Shi M, Maique J, Shaffer J, Yan S, Moe OW et al (2020) Beclin 1/Bcl-2 complex-dependent autophagy activity modulates renal susceptibility to ischemia-reperfusion injury and mediates renoprotection by Klotho. Am J Physiol Renal Physiol 318(3):F772–F92

    Article  PubMed  PubMed Central  Google Scholar 

  32. Posnere B, Tranf KA, Greeng DR, Xavierh RJ, Shawf SY, Clarked PG et al (2013) Autosis is a na, K-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc Natl Acad Sci U S A 110(51):20364–20371

    Article  Google Scholar 

  33. Chen W-T, Hung K-C, Wen M-S, Hsu P-Y, Chen T-H, Wang H-D et al (2013) Impaired leukocytes autophagy in chronic kidney disease patients. Cardiorenal Med 3(4):254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xin W, Li Z, Xu Y, Yu Y, Zhou Q, Chen L et al (2016) Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism 65(9):1307–1315

    Article  CAS  PubMed  Google Scholar 

  35. Andrianova NV, Jankauskas SS, Zorova LD, Pevzner IB, Popkov VA, Silachev DN et al (2018) Mechanisms of age-dependent loss of dietary restriction protective effects in acute kidney injury. Cells 7(10):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2435–2444

    Article  CAS  PubMed  Google Scholar 

  37. Cao Z, Wang Y, Long Z, He G (2019) Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim Biophys Sin 51(11):1087–1095

    Article  CAS  PubMed  Google Scholar 

  38. Bourhy L, Mazeraud A, Bozza FA, Turc G, Lledo P, Sharshar T (2022) Neuro-inflammatory response and brain-peripheral crosstalk in Sepsis and Stroke. Front Immunol 13:1–10

    Article  Google Scholar 

  39. Ditting T, Hilgers KF, Stetter A, Linz P, Schonweiss C, Veelken R (2020) Renal sympathetic nerves modulate erythropoietin plasma levels after transient hemorrhage in rats. Am J Physiol Renal Physiol 318(3):F772–F92

    Google Scholar 

Download references

Funding

This research was supported by a grant (no = 27721) from Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behjat Seifi.

Ethics declarations

Conflict of interest

No competing interests declared.

Ethical approval

Experimental protocols and animal care methods in the experiments were approved by the Animal Experimental Committee at Tehran University of Medical Sciences (Project number: 27721-30-04-93, Approval ID: 27721).

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbaran, M., Kadkhodaee, M., Adelipour, M. et al. A comparison between centrally and systemically administered erythropoietin on kidney protection in a model of fixed-volume hemorrhagic shock in male rats. Mol Biol Rep 50, 4781–4789 (2023). https://doi.org/10.1007/s11033-023-08412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08412-6

Keywords

Navigation